NANOLIGO Nanostar Sieving for Oligonucleotide Therapeutics

Grant number: 963843

Grant search

Key facts

  • Disease

  • Start & end year

  • Known Financial Commitments (USD)

  • Funder

    EC (Horizon)
  • Principle Investigator

  • Research Location

    United Kingdom, Europe
  • Lead Research Institution

  • Research Category

    Therapeutics research, development and implementation

  • Research Subcategory

    Pre-clinical studies

  • Special Interest Tags


  • Study Subject


  • Clinical Trial Details


  • Broad Policy Alignment


  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable


Since the Nobel Prize winning discovery of small interfering RNA its specificity and selectivity have driven the pharmaceutical industry to design 15- to 25-mer oligonucleotide analogues as a new class of drugs. These offer exciting new therapeutic possibilities for example in rare diseases, but also large patient population indications including cardiovascular disease, and viral pandemics such as Covid-19. However, the high cost and limited scalability of manufacturing these complex polymeric molecules using solid phase synthesis is holding back benefits for thousands of patients - and has motivated us to seek an improved technology for oligo synthesis. ERC Advanced Grant 786398 is funding research investigating a new technology platform for the fabrication of defined monomer sequence polymers - Nanostar Sieving. Our preliminary research into oligo synthesis using Nanostar Sieving has found that it is potentially both feasible and game-changing. NANOLIGO seeks proof-of-concept that Nanostar Sieving can unlock the tremendous potential of oligos through dramatically reducing production cost and increasing production capacity. We will work with RNA oligos - key targets for novel APIs - which are currently produced by solid phase synthesis, and show that these can be made entirely in the liquid phase, with unprecedentedly high purity, efficient chemistry and lower solvent consumption. Crucially, membrane separations are readily scaled up, making this process a strong candidate for kg-scale oligo production. The PI and members of his research team have founded a start-up, Excatmer, to ensure the results of the ERC Grant have impact. We will carry out the PoC project at Exactmer, so that if we are successful the technology can be more rapidly developed and scaled up, leading to significant economic benefits. We are driven by a desire to make oligonucleotide therapies affordable and so available to patients as rapidly as possible.