Development of field-deployable and point-of-need diagnostics for SARS-CoV-2 using CRISPR-based technology
- Funded by Canadian Institutes of Health Research (CIHR), Research Manitoba
- Total publications:1 publications
Grant number: 170703
Grant search
Key facts
Disease
COVID-19Known Financial Commitments (USD)
$293,368.66Funder
Canadian Institutes of Health Research (CIHR), Research ManitobaPrincipal Investigator
Bradley PickeringResearch Location
CanadaLead Research Institution
Canadian Science Centre for Human and Animal Health (Winnipeg)Research Priority Alignment
N/A
Research Category
Pathogen: natural history, transmission and diagnostics
Research Subcategory
Diagnostics
Special Interest Tags
N/A
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
Current diagnostic testing for the SARS-CoV-2 outbreak requires the use of specialized equipment for molecular-based pathogen detection. The equipment must be housed in a facility with electricity and freezers for storage of temperature sensitive materials and equipment operation. Lateral flow based assays are an alternative diagnostic tool that is inexpensive, temperature stable, user-friendly and has a faster turn-around-time (TAT). However, this platform takes longer to develop, with reduced specificity, sensitivity, and accuracy compared to molecular-based assays. An ideal diagnostic tool combines the adaptability and reliability of molecular assays with the TAT, cost-effectiveness, and stability of lateral flow. Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) based diagnostics can provide these capabilities and revolutionize the field of point-of-need molecular-based diagnostics. Our goal is to develop CRISPR-based diagnostics to detect SARS-CoV-2 at the point-of-need, such as at the bedside, passenger screening, or returning travellers who may have been exposed. We recently demonstrated that CRISPR-based diagnostics is reliable, sensitive and can be used to detect Ebola virus and Crimean-Congo hemorrhagic fever virus. SARS-CoV-2 is highly contagious and caused more than 69,000 infections and contributed to over 1600 deaths. Therefore, it is of utmost importance to quickly diagnose SARS-CoV-2 infection to administer appropriate patient care and isolation. CRISPR-based diagnostics is a next-generation diagnostic tool that can provide results in a timely manner and fill this gap. Implementation of CRISPR-based diagnostics will complement our armamentarium against high-consequence pathogens and will address the need for faster, cheaper, and more robust diagnostics for emerging infectious diseases of public health concern.
Publicationslinked via Europe PMC
Last Updated:14 hours ago
View all publications at Europe PMC