nCoV: Serological detection of past SARS-CoV-2 infection by non-invasive sampling for field epidemiology and quantitative antibody detection
- Funded by Department of Health and Social Care / National Institute for Health and Care Research (DHSC-NIHR), UK Research and Innovation (UKRI)
- Total publications:19 publications
Grant number: MC_PC_19078
Grant search
Key facts
Disease
COVID-19Start & end year
20202021Known Financial Commitments (USD)
$537,478.75Funder
Department of Health and Social Care / National Institute for Health and Care Research (DHSC-NIHR), UK Research and Innovation (UKRI)Principal Investigator
Prof. Richard TedderResearch Location
United KingdomLead Research Institution
Imperial College LondonResearch Priority Alignment
N/A
Research Category
Pathogen: natural history, transmission and diagnostics
Research Subcategory
Diagnostics
Special Interest Tags
N/A
Study Type
Unspecified
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Unspecified
Vulnerable Population
Unspecified
Occupations of Interest
Unspecified
Abstract
This COVID-19 Rapid Response award is jointly funded (50:50) between the Medical Research Council and the National Institute for Health Research. The figure displayed is the total award amount of the two funders combined, with each partner contributing equally towards the project. The escalating numbers of affected individuals in China and the potential for importation of this infection to the UK during the pre-symptomatic and potentially infectious stage renders containment problematic. Acute diagnostic PCR is of short duration usefulness in identifying those recovered from the infection. The pattern of disease is clinically diffuse rendering identification of previous infections through clinical history very difficult. Here we describe the commitment of an exceptional and highly capable scientific group who, including the PI, have previously developed specific, sensitive serology for Ebola, Zika and Lassa. The Ebola tests were instrumental in the identification of seropositive persons who had recovered silently from Ebola and characterising their antibody response. Following the same methodology for SARS-CoV-2 will allow specific detection of antibody rather than placing reliance on SARS serological assays, permitting measurement of the penetration of this infection into any susceptible population. A test format will also be developed for the non-invasive sampling of oral fluid for G and M class antibody. Recombinant envelope proteins S1 and S2 and nucleoprotein will allow the sensitive detection of antibody. Our assays, also adaptable for Point of Care and diagnostic use, will be rendered specific by described methods for conjugate quenching previously developed by the group for Zika(1). Having serology which is diagnostically important for public health, herd immunity measures will also enable establishing WHO international standards. Measurement of neutralising antibody will be important for vaccine studies and characterisation of convalescent plasma(2).
Publicationslinked via Europe PMC
Last Updated:14 hours ago
View all publications at Europe PMC