RAPID: Conformal, Anti-viral Nanofilms on Personal Protective equipmenT materials to combat CoronavirUs tRansmission/sequEstration (CAPTURE)

  • Funded by National Science Foundation (NSF)
  • Total publications:1 publications

Grant number: 2027489

Grant search

Key facts

  • Disease

    COVID-19
  • Start & end year

    2020
    2021
  • Known Financial Commitments (USD)

    $200,000
  • Funder

    National Science Foundation (NSF)
  • Principal Investigator

    Sudipta Seal
  • Research Location

    United States of America
  • Lead Research Institution

    The University of Central Florida Board of Trustees
  • Research Priority Alignment

    N/A
  • Research Category

    Infection prevention and control

  • Research Subcategory

    Barriers, PPE, environmental, animal and vector control measures

  • Special Interest Tags

    N/A

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

Engineering - In the current state of pandemic COVID 19, use of personal protective equipment e.g. medical gowns, gloves, facemasks, etc.) stand as the primary line of defense for preventing infection. Communication of the pathogen occurs directly, from person to person, as well as through cross-contamination from surface to surface. Current forms of personal protective equipment only provide user protection from infection by functioning as a physical barrier. Incorporation of virus-binding polymers and anti-viral nanomaterials with current forms of personal protective equipment can allow the ?capture? and ?killing? of virus species: protecting medical personnel/first responders and subsequently preventing the spread of contagions, such as the novel coronavirus. This RAPID proposal, supported by the nanoscale interaction program in the Division of Chemical, Bioengineering, Environmental, and Transport Systems, explores the nano-scale interactions between virus species and medically relevant nanomaterials. The project will utilize bio-compatible polymer nanolayers embedded with local UV light emitting nanoparticles as a model system for the future design of nanomaterial-based anti-viral coatings. Results from this study will demonstrate the efficacy of such nanomaterial platforms towards inactivating harmful viral pathogens as well as elucidate virus-biomedical material interactions. Such valuable information will be disseminated to the public for better design of improved and more effective personal protective equipment in the containment of coronavirus and other pathogens.

Viral pathogens pose a significant threat to humanity. The COVID-19 pandemic typifies this threat with substantial, crippling impact on the global social structures and economics already felt. Current forms of personal protective equipment function solely as physical barriers to infection/viral transmission (e.g. hospital gowns, medical face masks, gloves, etc.). Ideal personal protective equipment should directly inactivate the virus, upon contact: thereby assuring against user infection as well as preventing cross-contamination through surface to surface contact. In this RAPID project, we propose the design of a multi-layer, bio-compatible nano-polymer coating on personal protective equipment surfaces. These layers will further be seeded with complex oxide nanoparticles which absorb white/natural light and release local UV light to inactivate adsorbed virus agents. Additionally, specific polymers in the coating will be chemically modified with virus surface protein binding oligomeric molecules. The advantage of studying such interaction is twofold: (1) surface proteins are blocked from interacting with host cells (preventing infection) and (2) virus species are retained at the personal protective equipment surface allowing sufficient dosing of nanoparticle-mediated UV light. The combination of anti-viral nanoparticles and virus-selective oligomers will function as a model for future, nanomaterial-based, products effecting a ?capture? and ?kill? approach. Specifically, this interdisciplinary study between engineering and biomedical sciences will highlight nanoscale binding interactions (oligomer-protein, polymer-virus membrane) and the efficacy of nano-emitters in anti-viral platforms. The data collected will educate and inform the general public on diverse, relevant subjects; including outreach to various audiences. The model is designed to be highly generalizable to other virus types and for incorporation of nanomaterials with varying chemical, optical, or biological modes of action.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Publicationslinked via Europe PMC

Last Updated:an hour ago

View all publications at Europe PMC

Potent Inactivation of Human Respiratory Viruses Including SARS-CoV-2 by a Photoactivated Self-Cleaning Regenerative Antiviral Coating.