Collaborative Research: RAPID: Building a Spatiotemporal Platform for Rapid Response to COVID-19
- Funded by National Science Foundation (NSF)
- Total publications:0 publications
Grant number: unknown
Grant search
Key facts
Disease
COVID-19Start & end year
20202021Known Financial Commitments (USD)
$99,956Funder
National Science Foundation (NSF)Principal Investigator
Chaowei YangResearch Location
United States of AmericaLead Research Institution
George Mason UniversityResearch Priority Alignment
N/A
Research Category
Epidemiological studies
Research Subcategory
Impact/ effectiveness of control measures
Special Interest Tags
Data Management and Data Sharing
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
The Spatiotemporal Innovation IUCRC develops novel spatiotemporal analytical tools to enable applications of national and global significance. In response to the COVID-19 crisis, Harvard University and George Mason University, university sites within this IUCRC, propose this collaborative project to collect and share COVID related data in near real time, conduct spatiotemporal analytics, and mine socioeconomic and environmental knowledge to facilitate decision support systems in response to the pandemic.
This project will build a unique cloud-based platform composed of a data collection subsystem for collecting global, high quality COVID-19-related data; spatiotemporal analytics tools for analyzing the disease evolution and socioeconomic patterns; and, modeling tools for assessing medical supplies and logistics. Through web access services, the platform will provide capabilities for easy access to the data collected as well as access to the developed spatiotemporal analytical and modeling tools. Such capabilities will facilitate quick production of data-driven decision support systems for community preparedness. This project has secured participation of 50+ international researchers in developing the proposed platform. These researchers will help collect and validate data, analyze how policies influence the outbreaks, how the Earth environment is impacted, and how to balance reopening of the economy and controlling the spreading of the disease in the U.S. based on experiences from Asia and Europe. Over 200 undergraduate volunteers, including many from underrepresented groups, are already involved in this project through Harvard?s Coronavirus Visualization Team efforts.
Data, information, and knowledge accumulated in this project have been, and will continue to be, archived long term in a comprehensive gateway (covid-19.stcenter.net). Such data include spatiotemporal distribution of confirmed cases, relevant social, economic and natural information from different resources, such as authoritative reports, news releases, Earth observation, and social media. Software and tools developed are posted on GitHub for open access. Sustained online collaboration is being conducted to produce replicable research using spatiotemporal analyses to mine patterns and relations between COVID-19 and social and natural factors for community response and preparedness.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project will build a unique cloud-based platform composed of a data collection subsystem for collecting global, high quality COVID-19-related data; spatiotemporal analytics tools for analyzing the disease evolution and socioeconomic patterns; and, modeling tools for assessing medical supplies and logistics. Through web access services, the platform will provide capabilities for easy access to the data collected as well as access to the developed spatiotemporal analytical and modeling tools. Such capabilities will facilitate quick production of data-driven decision support systems for community preparedness. This project has secured participation of 50+ international researchers in developing the proposed platform. These researchers will help collect and validate data, analyze how policies influence the outbreaks, how the Earth environment is impacted, and how to balance reopening of the economy and controlling the spreading of the disease in the U.S. based on experiences from Asia and Europe. Over 200 undergraduate volunteers, including many from underrepresented groups, are already involved in this project through Harvard?s Coronavirus Visualization Team efforts.
Data, information, and knowledge accumulated in this project have been, and will continue to be, archived long term in a comprehensive gateway (covid-19.stcenter.net). Such data include spatiotemporal distribution of confirmed cases, relevant social, economic and natural information from different resources, such as authoritative reports, news releases, Earth observation, and social media. Software and tools developed are posted on GitHub for open access. Sustained online collaboration is being conducted to produce replicable research using spatiotemporal analyses to mine patterns and relations between COVID-19 and social and natural factors for community response and preparedness.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.