RAPID: Effective Resource Planning and Disbursement during the COVID-19 Pandemic

  • Funded by National Science Foundation (NSF)
  • Total publications:0 publications

Grant number: unknown

Grant search

Key facts

  • Disease

    COVID-19
  • Start & end year

    2020
    2021
  • Known Financial Commitments (USD)

    $150,000
  • Funder

    National Science Foundation (NSF)
  • Principal Investigator

    Quanyan Zhu
  • Research Location

    United States of America
  • Lead Research Institution

    New York University
  • Research Priority Alignment

    N/A
  • Research Category

    Policies for public health, disease control & community resilience

  • Research Subcategory

    Approaches to public health interventions

  • Special Interest Tags

    N/A

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Unspecified

  • Vulnerable Population

    Unspecified

  • Occupations of Interest

    Unspecified

Abstract

Uncertainties during global pandemics, such as the novel Corona virus disease (COVID-19), can generate fear and anxiety, resulting in panic-buying and overreactive consumer behavior. Information from a multitude of sources may further exacerbate the situation, leading to shortages of critical disease prevention products for emergency managers and those in dire need. The consumer response may also vary based on population demographics and community interactions. This project aims to understand the relationships between consumer panic-buying, reports on infected cases, and local population demographics in a large and densely populated urban epicenter of the virus. Fundamental understanding of community factors and the role of reports on consumer behavior in emergencies will enable effective and timely decisions on resource planning and disbursement, preventing unexpected shortages of critical supplies in large and diverse urban centers. In addition, the quantitative methodologies developed in this project bridge the disciplines of engineering, computer science, social and health science, creating a new interdisciplinary paradigm that provides a holistic view towards emergency preparedness and disaster management in urban centers.

The main focus of this RAPID project is to develop a multi-network framework that captures the linkages and inter-dependencies between networks that govern information spreading, panic spreading, and disease spreading in urban populations. Fundamental understanding of the relationships between various factors such as consumer buying behavior, socio-economic community characteristics, and the extent of available health information enables the assessment of potential outcomes such as shortages of critical disease prevention supplies. Data and crowdsourced information from the COVID-19 experience of selected NYC neighborhoods is used as a case study for validation studies. An accurate understanding of the multi-faceted consumer behavior enables decision analytics for effective planning and targeted disbursement of critical supplies for mitigating the effects of panic-buying. The identification of underlying complex and interdependent network structures provides insights into the design of equitable and effective strategies for resource planning and allocation to tackle the vicious panic cycle in emergencies, thus promoting urban resilience.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.