Collaborative Research: RAPID: Forest productivity and expression in a low-emissions present: A RAPID response to the COVID-19 Emissions Reduction Event
- Funded by National Science Foundation (NSF)
- Total publications:0 publications
Grant number: unknown
Grant search
Key facts
Disease
COVID-19Start & end year
20202021Known Financial Commitments (USD)
$91,938Funder
National Science Foundation (NSF)Principal Investigator
Nathan SwensonResearch Location
United States of AmericaLead Research Institution
University of Maryland College ParkResearch Priority Alignment
N/A
Research Category
Secondary impacts of disease, response & control measures
Research Subcategory
Other secondary impacts
Special Interest Tags
N/A
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
State and federal policies have significantly limited human activities to keep the U.S. population safe during the COVID-19 pandemic. This has resulted in a significant decrease of atmospheric inputs from the reduction in automobile and air travel. The unprecedented and dramatic reduction in traffic in major metropolitan areas where emissions are consistently high is transforming the atmosphere, even at continental scales. The COVID-19 event presents a unique, ephemeral, and rare opportunity to study how forests would respond to dramatically cleaner air in the United States. This award will explore how North American forests that have experienced a life-time of the byproducts of human transportation respond by examining responses from the genetic and molecular levels to the forest scale. The research will be conducted at a large forest plot near the Washington DC metropolitan area with a long history of forest research and adjacent to a National Ecological Observatory Network (NEON) tower. These linkages provide opportunities to scale the molecular research to potential ecosystem responses to emissions reduction efforts. The Education Office at Smithsonian Environmental Research Center (SERC), which works with thousands of high school students and their teachers every year will incorporate results into classroom activities at the SERC Education Center.
Knowing how trees and forested ecosystems respond to a transformed atmosphere is critical for providing projections of the Earth system under ongoing global change. This proposal provides a unique opportunity to explore the potential consequences of future policy by evaluating what could happen if emissions were dramatically reduced. The project provides an unprecedented opportunity to study the impacts from the genomic, physiological, population, community, ecosystem level given the ongoing research at these levels and leveraging existing infrastructure and data provided by the Smithsonian (Forest GEO), US Forest Service (FIA plots), and NSF (NEON). The research will focus on gene expression profiles of two species (beech and red maple) to explore whether they will exhibit parallel shifts favoring maximal growth in all size classes compared to pre-Covid-19 conditions. The research will examine how leaf chlorophyll content at the end of the growing season will predict gene expression differences. The research will also explore gene pathways that deal with reactive oxidative stress (ROS) reactions, repair, and stress signaling and the physiological responses for growth and reproduction for this and next growing season
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Knowing how trees and forested ecosystems respond to a transformed atmosphere is critical for providing projections of the Earth system under ongoing global change. This proposal provides a unique opportunity to explore the potential consequences of future policy by evaluating what could happen if emissions were dramatically reduced. The project provides an unprecedented opportunity to study the impacts from the genomic, physiological, population, community, ecosystem level given the ongoing research at these levels and leveraging existing infrastructure and data provided by the Smithsonian (Forest GEO), US Forest Service (FIA plots), and NSF (NEON). The research will focus on gene expression profiles of two species (beech and red maple) to explore whether they will exhibit parallel shifts favoring maximal growth in all size classes compared to pre-Covid-19 conditions. The research will examine how leaf chlorophyll content at the end of the growing season will predict gene expression differences. The research will also explore gene pathways that deal with reactive oxidative stress (ROS) reactions, repair, and stress signaling and the physiological responses for growth and reproduction for this and next growing season
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.