SBIR Phase I: COVID-19 Detection on a Handheld Smartphone-Enabled Platform

  • Funded by National Science Foundation (NSF)
  • Total publications:0 publications

Grant number: unknown

Grant search

Key facts

  • Disease

    COVID-19
  • Start & end year

    2020
    2021
  • Known Financial Commitments (USD)

    $256,000
  • Funder

    National Science Foundation (NSF)
  • Principal Investigator

    Katherine Clayton
  • Research Location

    United States of America
  • Lead Research Institution

    Omnivis LLC
  • Research Priority Alignment

    N/A
  • Research Category

    Pathogen: natural history, transmission and diagnostics

  • Research Subcategory

    Diagnostics

  • Special Interest Tags

    Innovation

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

The broader impact/commercial potential of this Small Business Innovation Research (SBIR) project is a handheld smartphone-enabled hardware platform for the rapid detection of COVID-19 in nasal swab samples. The proposed project will translate a portable smartphone enabled platform to detect COVID-19 in patient samples in 30-90 minutes in a standard clinical setting or in an even lower-resource facility. After diagnosis, data are immediately recorded and encrypted with geo-mapped and time-stamped for public health use. This novel and proactive approach for detection can enable communities to rapidly detect COVID-19 and monitor outbreak data to suppress disease spread.

This Small Business Innovation Research (SBIR) Phase I project addresses the need to develop a rapid and portable COVID-19 point-of-care diagnostic. The scope of the Phase I project is to develop a robust nucleic acid assay to specifically and sensitively detect for COVID-19 in a handheld smartphone-enabled device. This project proposes an optimized nucleic acid amplification assay that is highly selective and rapid, while maintaining sensitivity, specificity, and a low false positive rate. Additionally, the project will test the optimized assay in the presence of nasopharyngeal (nasal) swabs and viral transport media, preparing a robust platform for clinical analysis of both fresh and stored samples. The project will integrate the assay into a sample-to-answer device for fast COVID-19 nucleic acid diagnosis.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.