Detection and temporal monitoring of SARS-CoV-2 in Norwegian hospitals and other high transmission risk environments (NorCoV2)

  • Funded by The Research Council of Norway (RCN)
  • Total publications:0 publications

Grant number: unknown

Grant search

Key facts

  • Disease

    COVID-19
  • Start & end year

    2020
    2021
  • Known Financial Commitments (USD)

    $212,850
  • Funder

    The Research Council of Norway (RCN)
  • Principal Investigator

    Jostein Gohli
  • Research Location

    Norway
  • Lead Research Institution

    FORSVARETS FORSKNINGSINSTITUTT
  • Research Priority Alignment

    N/A
  • Research Category

    Pathogen: natural history, transmission and diagnostics

  • Research Subcategory

    Pathogen genomics, mutations and adaptations

  • Special Interest Tags

    N/A

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    Not applicable

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

The extremely rapid spread of COVID-19 has resulted in a severe global impact. To stem the tide of the current pandemic, reducing transmission rates within populations and understanding the epidemiological dynamics of COVID-19 is of paramount importance. One way to reduce transmission is to reduce exposure, which requires knowledge about the exposure risk in different environments and scenarios. Further, identifying the sources of observed SARS-CoV-2 strains could identify important transmission routes. The NorCoV2 project will utilize environmental sampling in hospital, subway and airport environments, which are all important with regard to spreading infectious diseases. Air and surface samples will be collected weekly for a period of six months. The presence and abundance of SARS-CoV-2 will be analyzed with Real-Time Quantitative Reverse Transcription PCR (qRT-PCR), and samples where SARS-CoV-2 is detected will be direct RNA long-read sequenced on the Oxford Nanopore Technologies (ONT) MinION platform. The results from NorCoV2 will provide information on exposure risk in important infrastructures, examine the effectiveness of cleaning procedures and infection control measures, provide a high-resolution time series analysis of the current outbreak, and perform critical geographic tracking analyses of environmentally observed SARS-CoV-2 strains. Project members include important stakeholders from the hospital and mass transit sector, and the ENVIRION project, which will perform environmental monitoring of SARS-CoV-2 in sewage. The collaboration with ENVIRION will allow for cross-validation of these two separate monitoring approaches. NorCoV2 will also contribute to a large international SARS-CoV-2 mapping effort coordinated by the MetaSUB Consortium.