Assessment of Masks and Aerosol Characterization from Cough, Sneeze, Speech, and Breath [Funder: Carleton University COVID-19 Rapid Research Response Grants]

Grant number: unknown

Grant search

Key facts

  • Disease

    COVID-19
  • Funder

    Other Funders (Canada)
  • Principal Investigator

    Edgar Matida
  • Research Location

    Canada
  • Lead Research Institution

    Carleton University
  • Research Priority Alignment

    N/A
  • Research Category

    Pathogen: natural history, transmission and diagnostics

  • Research Subcategory

    Pathogen morphology, shedding & natural history

  • Special Interest Tags

    N/A

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

COVID-19 can be spread by sneezing, coughing, and possibly even through normal conversation. The proposed research comprises numerical, in vitro, and in vivo fundamental studies of the characterization (size and velocity) of droplets and aerosols during sneezing, coughing, talking, and breathing as functions of time and distance from the source. An adjustable cough and sneeze aerosol generator will be created and used to test filtration levels of popular designs of homemade masks. During the in vivo portion of the work (planned for when the present pandemic has subsided and social distancing regulations have eased), plume visualization using high-speed shadowgraph imaging techniques will be performed to complement the simultaneous measurement of aerosol size and velocity using phase Doppler anemometry at determined distances from the airborne material source. Numerical simulations of aerosol dispersion, validated against the experimental data, will provide a complete spatial characterization of the plumes.