STTR Phase I: AI-assisted Assessment, Tracking, and Reporting of COVID-19 Severity on Chest CT

  • Funded by National Science Foundation (NSF)
  • Total publications:0 publications

Grant number: 2032534

Grant search

Key facts

  • Disease

    COVID-19
  • Start & end year

    2020
    2021
  • Known Financial Commitments (USD)

    $256,000
  • Funder

    National Science Foundation (NSF)
  • Principal Investigator

    Maqbool Patel
  • Research Location

    United States of America
  • Lead Research Institution

    AI METRICS LLC
  • Research Priority Alignment

    N/A
  • Research Category

    Clinical characterisation and management

  • Research Subcategory

    Supportive care, processes of care and management

  • Special Interest Tags

    Digital Health

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

The broader impact /commercial potential of this Small Business Technology Transfer (STTR) Phase I project is to leverage artificial intelligence (AI) to reduce errors and improve accuracy, standardization, agreement, and reporting in evaluation of COVID-19 lung disease severity on chest computed tomography (CT) images. Chest CT procedures play a critical role in COVID-19 patients but current methods for evaluating chest CT images lack accurate, quantitative, or consistent information, leading to text-based reports that are difficult to interpret. The proposed AI-assisted COVID-19 chest CT workflow will efficiently capture the fraction of lung involvement and improve communication with clinicians by providing a standardized graphical report, key images of important findings, and structured text. The quantitative data will standardize reporting on an individual patient basis and provide data for population-level analyses, thereby offering the potential to significantly advance scientific knowledge of COVID-19 lung disease on a national level.

This STTR Phase I project proposes to develop an AI-assisted COVID-19 chest CT workflow to rapidly and objectively quantify the percentage of lung involvement, classify lung involvement using the COVID-19 Reporting and Data System (CO-RADS), track common and uncommon COVID-19 lung findings, and automatically generate summary reports with a graph, key images, and structured text. The standard-of-care for assessing and reporting COVID-19 lung disease severity on chest CT images involves dictated text-based reports that are subjective, highly variable, inefficient to generate and interpret, prone to errors, incomplete, and qualitative with data provided in an unstandardized format. The proposed AI-assisted COVID-19 chest CT workflow will reduce interpretation errors and omissions and improve accuracy, standardization, inter-observer agreement, efficiency, and reporting in evaluation of COVID-19 disease severity and response to treatment. This project will validate the working prototype with a team of expert clinicians.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.