SBIR Phase I: Machine Learning for Early Detection of COVID-19 Plaques in Cells

  • Funded by National Science Foundation (NSF)
  • Total publications:0 publications

Grant number: 2029707

Grant search

Key facts

  • Disease

    COVID-19
  • Start & end year

    2020
    2021
  • Known Financial Commitments (USD)

    $255,571
  • Funder

    National Science Foundation (NSF)
  • Principal Investigator

    Ilya Goldberg
  • Research Location

    United States of America
  • Lead Research Institution

    ViQi LLC
  • Research Priority Alignment

    N/A
  • Research Category

    Pathogen: natural history, transmission and diagnostics

  • Research Subcategory

    Diagnostics

  • Special Interest Tags

    Digital HealthInnovation

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is to accelerate the development of vaccines and anti-virals with artificial intelligence (AI) techniques. This project will develop technology to detect changes in virus-infected cells days or weeks before they can be detected manually. This will accelerate studies for novel anti-viral compounds characterizing their effectiveness on rapidly mutating viral strains, such as influenza and SARS-CoV-2. This will impact COVID-19 research and general virology.

This SBIR Phase I project will investigate AI techniques to accelerate testing of anti-viral agents in plaque assays for the development of vaccines and anti-virals. These assays measure the number of infectious viral particles in a sample by observing the effects of infection on a culture of susceptible cells. Currently, the assay takes 2-14 days because several rounds of infection are necessary to ensure an accurate reading. This project will advance AI techniques to automatically detect infected cells in microscopy images without human intervention or time-consuming preparations, thereby increasing the throughput for these assays. To achieve this goal, this project will: 1) Collect a time-course of microscopy images of infected cell cultures for training an AI model to measure virus infections automatically on large cell culture plates; 2) Investigate microscopy image acquisition approaches with respect to ease of integration in existing workflows and image quality; 3) Evaluate the suitability of various AI techniques; 4) Determine the detection accuracy and compare it with traditional assays.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.