Pathfinder:Experimental Human Challenge with Genetically Modified Commensals to Investigate Respiratory Tract Mucosal Immunity and Colonisation

  • Funded by UK Research and Innovation (UKRI)
  • Total publications:35 publications

Grant number: MR/N026993/1

Grant search

Key facts

  • Disease

    COVID-19
  • Start & end year

    2017
    2020
  • Known Financial Commitments (USD)

    $118,454.4
  • Funder

    UK Research and Innovation (UKRI)
  • Principal Investigator

    Professor Robert Read
  • Research Location

    United Kingdom
  • Lead Research Institution

    University of Southampton
  • Research Priority Alignment

    N/A
  • Research Category

    Pathogen: natural history, transmission and diagnostics

  • Research Subcategory

    Immunity

  • Special Interest Tags

    N/A

  • Study Type

    Clinical

  • Clinical Trial Details

    Not applicable

  • Broad Policy Alignment

    Pending

  • Age Group

    Adults (18 and older)

  • Vulnerable Population

    Unspecified

  • Occupations of Interest

    Unspecified

Abstract

This is a pathfinder study to establish the utility of experimental human challenge with a genetically modified commensal bacterium as a future method to investigate pathogenesis, immunity and to discover and test new vaccines. The commensal bacterium Neisseria lactamica (Nlac) does not have a polysaccharide capsule , so any adaptive immune response to this bacterium after colonisation of the nasopharynx must be directed at non-capsular antigens, providing a good platform for assessing non-anti-polysaccharide immunity against colonising bacteria in the upper respiratory tract. A wild-type strain of Nlac Y92-1009 (Nlac), will be chromosomally modified to express the strongly immunogenic meningococcal antigen PorA (GM-Nlac). GM-Nlac will be fully characterised, in particular with respect to enhanced antimicrobial or serum resistance, and altered genome stability cf Nlac. An application will then be made to DEFRA and the National Research Ethics Service to perform a controlled infection study in which non-smoking male participants aged 18-45 will be infected intranasally at a dose of 10,000 colony forming units (selected because we previously have infected >350 volunteers with Nlac at this dose) and then permitted to re-enter the community after challenge and followed up for 4 weeks. In a comprehensive serological and cellular immunological study we will define the nature and kinetics of the PorA-specific immune response to colonising GM-Nlac and measure recombination in carried isolates over the ensuing period of carriage. PorA is phase variable so we will determine the effect of phase variation in a second challenge experiment by comparing the serological and cellular responses to GM-Nlac expressing PorA under a phase variable promoter with one that is constitutively highly expressed. We will also compare the immune response to Nlac antigens between GM-Nlac and Nlac infected participants, to understand the effect of immunodominant antigens on immunity.

Publicationslinked via Europe PMC

Effect of colonisation with Neisseria lactamica on cross-reactive anti-meningococcal B-cell responses: a randomised, controlled, human infection trial.

Antibiotics for lower respiratory tract infection in children presenting in primary care (ARTIC-PC): the predictive value of molecular testing.

Persistence of immunogenicity after seven COVID-19 vaccines given as third dose boosters following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK: Three month analyses of the COV-BOOST trial.

Public attitudes to a human challenge study with SARS-CoV-2: a mixed-methods study.

Effect of priming interval on reactogenicity, peak immunological response, and waning after homologous and heterologous COVID-19 vaccine schedules: exploratory analyses of Com-COV, a randomised control trial.

Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): a single-blind, randomised, phase 2, non-inferiority trial.

Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial.

Neisseria lactamica Controlled Human Infection Model.