SARS-CoV-2 in Sewage Treatment Works: Environmental Impact, Infectivity and Prevalence Modelling
- Funded by UK Research and Innovation (UKRI)
- Total publications:4 publications
Grant number: NE/V010387/1
Grant search
Key facts
Disease
COVID-19Known Financial Commitments (USD)
$759,407.39Funder
UK Research and Innovation (UKRI)Principal Investigator
Vincent SavolainenResearch Location
United KingdomLead Research Institution
Imperial College LondonResearch Priority Alignment
N/A
Research Category
Pathogen: natural history, transmission and diagnostics
Research Subcategory
Environmental stability of pathogen
Special Interest Tags
N/A
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
Given that SARS-CoV-2 RNA is detectable in faeces for prolonged periods (even for otherwise asymptomatic individuals), efforts have so far concentrated on trying to map its prevalence using sewage samples, e.g. via our partners at Bangor University (NERC Urgency Grant NE/V004883/1). Because live viruses have also been detected in the stools of patients affected by COVID19, there is growing concern about the risks of faecal-oral transmission to humans and/or wildlife (where the virus first originated) via sewage outflows and overspill. This is particularly worrying as, for example, hundreds of tonnes of raw sewage enter the Thames each year when sewers overflow during rainstorms, effectively bypassing sewage treatment works (STWs) when they exceed capacity. We combine expertise from Life Sciences and Mathematics at Imperial College, corona virology at Nottingham University, and a network of collaborators to fill this gap and to complement ongoing work in related (but not overlapping) areas. We have also already secured £49K of internal funding from Imperial College to prime the lab work, as a direct in-kind contribution. First, the potential for sewage (via effluent discharge, storm overflows, and other forms of run-off) to contribute to transmission to humans and wildlife will be measured by assessing RNA concentration and viral infectivity from environmental samples, from sewage outflows down to rivers, estuaries, and faeces from wildlife. Second, using data on concentrations of SARS-CoV-2 RNA in sewage and in the environment, we will provide models of population-level prevalence of COVID19 and elucidate key environmental transmission routes for management.
Publicationslinked via Europe PMC
Last Updated:2 days ago
View all publications at Europe PMC