Scoring Drugs: Small Molecule Drug Discovery for COVID-19 using Physics-Inspired Machine LearningMedical Imaging Domain-Expertise Machine Learning for Interrogation of COVID
- Funded by C3.ai DTI
- Total publications:0 publications
Grant number: unknown
Grant search
Key facts
Disease
COVID-19Funder
C3.ai DTIPrincipal Investigator
Prof and Prof Teresa Head-Gordon, Rommie AmaroResearch Location
United States of AmericaLead Research Institution
University of California-Berkeley, University of California-San DiegoResearch Priority Alignment
N/A
Research Category
Therapeutics research, development and implementation
Research Subcategory
Pre-clinical studies
Special Interest Tags
N/A
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
The rapid spread of SARS-CoV-2 has spurred the scientific world into action for therapeutics to help minimize fatalities from COVID-19. Molecular modeling is combating the current global pandemic through the traditional process of drug discovery, but the slow turnaround time for identifying leads for antiviral drugs, analyzing structural effects of genetic variation in the evolving virus, and targeting relevant virus-host protein interactions is still a great limitation during an acute crisis. The first component of drug discovery-the structure of potential drugs and the target proteins-has driven functional insight into biology ever since Watson, Crick, Franklin, and Wilkins solved the structure of DNA. What could we do with structural models of host and virus proteins and small molecule therapeutics? We can further enrich structure with dynamics for discovery of new surface sites exposed by fluctuations to bind drugs and peptide therapeutics not revealed by a static structural model. These "cryptic" binding sites offer new leads in drug discovery but will only yield fruit if they can be assessed rapidly for binding affinity for new small molecule drugs. We offer physics-inspired data-driven models to: 1) extend the chemical space of new drugs beyond those available; 2) create reliable scoring functions to evaluate drug binding affinities to cryptic binding sites of COVID-19 targets; 3) accelerate computation of binding affinities by training machine learning models; and 4) closing the loop of design and evaluation to bias the distribution of new drug candidates towards desired metrics enabled by C3-AI Suite.