Scoring Drugs: Small Molecule Drug Discovery for COVID-19 using Physics-Inspired Machine LearningMedical Imaging Domain-Expertise Machine Learning for Interrogation of COVID

Grant number: unknown

Grant search

Key facts

  • Disease

    COVID-19
  • Funder

    C3.ai DTI
  • Principal Investigator

    Prof and Prof Teresa Head-Gordon, Rommie Amaro
  • Research Location

    United States of America
  • Lead Research Institution

    University of California-Berkeley, University of California-San Diego
  • Research Priority Alignment

    N/A
  • Research Category

    Therapeutics research, development and implementation

  • Research Subcategory

    Pre-clinical studies

  • Special Interest Tags

    N/A

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

The rapid spread of SARS-CoV-2 has spurred the scientific world into action for therapeutics to help minimize fatalities from COVID-19. Molecular modeling is combating the current global pandemic through the traditional process of drug discovery, but the slow turnaround time for identifying leads for antiviral drugs, analyzing structural effects of genetic variation in the evolving virus, and targeting relevant virus-host protein interactions is still a great limitation during an acute crisis. The first component of drug discovery-the structure of potential drugs and the target proteins-has driven functional insight into biology ever since Watson, Crick, Franklin, and Wilkins solved the structure of DNA. What could we do with structural models of host and virus proteins and small molecule therapeutics? We can further enrich structure with dynamics for discovery of new surface sites exposed by fluctuations to bind drugs and peptide therapeutics not revealed by a static structural model. These "cryptic" binding sites offer new leads in drug discovery but will only yield fruit if they can be assessed rapidly for binding affinity for new small molecule drugs. We offer physics-inspired data-driven models to: 1) extend the chemical space of new drugs beyond those available; 2) create reliable scoring functions to evaluate drug binding affinities to cryptic binding sites of COVID-19 targets; 3) accelerate computation of binding affinities by training machine learning models; and 4) closing the loop of design and evaluation to bias the distribution of new drug candidates towards desired metrics enabled by C3-AI Suite.