Targeted Interventions in Networked and Multi-Risk SIR Models: How to Unlock the Economy During a Pandemic
- Funded by C3.ai DTI
- Total publications:0 publications
Grant number: unknown
Grant search
Key facts
Disease
COVID-19Funder
C3.ai DTIPrincipal Investigator
Unspecified Asuman Ozdaglar, Daron Acemoglu, Francesca PariseResearch Location
United States of AmericaLead Research Institution
Massachusetts Institute of TechnologyResearch Priority Alignment
N/A
Research Category
Epidemiological studies
Research Subcategory
Impact/ effectiveness of control measures
Special Interest Tags
N/A
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
The main objective of the proposed research is to study optimal lockdown and testing policies for the containment of disease spread in networked environments. Our motivation comes from three peculiar aspects of the COVID-19 pandemic. First, since a vaccine is not yet available one needs to rely on virus containment strategies (such as lockdowns) as intervention tools, which have serious economic repercussions. Our first objective is to develop lockdown models that consider epidemic and economic aspects simultaneously. Since individuals in the population may have different risks and different productivity levels, this requires models that explicitly account for the heterogeneity of different groups and their network of interactions. Our second objective is to exploit these network models to study targeted interventions. In particular we aim at understanding what is the best policy to gradually reopen the economy by taking into account the role of the different groups in terms of their productivity and their risk level. Finally, since COVID-19 is a pandemic, it is important to note that interventions actuated by local governments will have ripple effects on neighboring states, hence coordination of efforts from different governments is of paramount importance. As the third objective, we aim at studying how state interconnections and mobility patterns affect the optimal response to an epidemic in networked environments. Results from the proposed research will help leaders and decision makers in understanding how to optimally unlock the economy within a state and how to optimally coordinate efforts between states.