SPIKE-CAP - Blocking SARS-CoV-2 Spike protein through Computer-Aided design of Peptide inhibitors
- Funded by Partnership for Advanced Computng in Europe (PRACE)
- Total publications:0 publications
Grant number: unknown
Grant search
Key facts
Disease
COVID-19Funder
Partnership for Advanced Computng in Europe (PRACE)Principal Investigator
Alfonso GautieriResearch Location
Italy, United States of AmericaLead Research Institution
Politecnico di MilanoResearch Priority Alignment
N/A
Research Category
Therapeutics research, development and implementation
Research Subcategory
Pre-clinical studies
Special Interest Tags
N/A
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
SPIKE-CAP - Blocking SARS-CoV-2 Spike protein through Computer-Aided design of Peptide inhibitors is a PRACE-awarded project led by Dr Alfonso Gautieri from the Polytechnic University of Milan, Italy. The SPIKE-CAP project aims to design antiviral peptides (short chains of amino acids, linked by peptide bonds) with ultra-high affinity for the coronavirus spike protein (S) by using high-throughput computational deep scanning mutagenesis. The most promising candidate will be tested by a partner lab at Massachusetts Institute of Technology (MIT) with bio-layer interferometry (BLI) and X-ray crystallography. Using a computational scanning mutagenesis method, developed at the Polytechnic University of Milan and based on Simulated Annealing Molecular Dynamics, the team will computationally screen peptide mutations and rank them by binding affinity to S protein, while a machine learning algorithm, developed by MIT, will ensure the correct helical folding. The project has the potential to identify peptides with ultra-high affinity to the spike of the virus, which would outcompete binding with human ACE2, thereby preventing viral infection. The team expects that this project could be helpful for future design of peptidie therapeutics. To support this innovative approach, PRACE awarded the project with 44 000 000 core hours on Marconi100, hosted by CINECA, Italy.