Targeting polyamines to suppress SARS-CoV-2 related disease
- Funded by National Institutes of Health (NIH)
- Total publications:0 publications
Grant number: 1UG3TR003597-01
Grant search
Key facts
Disease
COVID-19Start & end year
20212022Known Financial Commitments (USD)
$306,997Funder
National Institutes of Health (NIH)Principal Investigator
Unspecified Natalia A Ignatenko, David G BesselsenResearch Location
United States of AmericaLead Research Institution
University Of ArizonaResearch Priority Alignment
N/A
Research Category
Therapeutics research, development and implementation
Research Subcategory
Pre-clinical studies
Special Interest Tags
N/A
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
ABSTRACT The pandemic COronaVIrus disease 2019 (COVID-19) is an infectious disease, which is caused by a novel and highly pathogenic virus strain SARS-CoV-2 (Severe acute respiratory virus syndrome coronavirus 2). The infection may cause severe lower respiratory tract infection with acute respiratory distress and extrapulmonary organ disfunctions in infected individuals. Treatment strategy that both limits SARS-CoV-2 replication and reduce inflammation associated with COVID-19 would provide the greatest therapeutic benefit. Polyamines are naturally occurring organic cations that are essential for growth and development of both prokaryotic and eukaryotic cells. Many viruses require host polyamines for replication in the infected cells and targeting polyamine metabolism during viral infection showed promising results in in vitro and in vivo animal studies. The goal of this proposal is to test the applicability of two currently FDA approved drugs, eflornithine (other name α-difluoromethylornithine or DFMO) and sulindac, and their combination for prevention or treatment of COVID-19 disease. Eftornithine is an irreversible inhibitor of a key polyamine biosynthetic enzyme ornithine decarboxylase (ODC). Sulindac is a common non-steroidal anti-inflammatory drug (NSAIDs), which also induces polyamine catabolism. Eflornithine and sulindac work in a complementary manner to reduce intracellular polyamine levels. The safety doses of eflornithine/sulindac combination have been established for prevention of recurrence of high-risk adenomas (ClinicalTrials.gov Identifier NCT00118365). In this proposal we will test the hypothesis that eflornithine and sulindac combination will reduce both the intracellular polyamine availability for coronavirus replication, and inflammation associated with COVID-19. We will test this hypothesis using cell culture models (Specific Aim 1) and mouse models of COVID-19 disease (Specific Aim 2). Planning activities in preparation for clinical trials for eflornithine/sulindac combination for antiviral indication in collaboration with Cancer Prevention Pharmaceuticals (CPP) (www.canprevent.com) are also included. The translational goal of this project is to develop the effective approach for prevention COVID-19 infection as well as decreasing severity of the viral infection in the COVID-19 patients. It is essential to develop new approaches to prevention and treatment of virus outbreaks.