Development and manufacturing of innovative, low-cost, mass-produced, environmentally friendly filters and masks protecting against COVID-19
- Funded by UK Research and Innovation (UKRI)
- Total publications:0 publications
Grant number: EP/W01114X/1
Grant search
Key facts
Disease
COVID-19Start & end year
20212022Known Financial Commitments (USD)
$660,604.16Funder
UK Research and Innovation (UKRI)Principal Investigator
Constantina LekakouResearch Location
United KingdomLead Research Institution
University of SurreyResearch Priority Alignment
N/A
Research Category
Infection prevention and control
Research Subcategory
Barriers, PPE, environmental, animal and vector control measures
Special Interest Tags
N/A
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
Given the surge in demand for masks to protect against CONVID-19, there is huge investment for new mask manufacturing plants in UK. A shortage of specialised mask materials points to the need to also manufacture these materials in UK. Enlisted in this herculean effort, we have assembled a team of industrial partners, including mask manufacturers, an equipment manufacturer, and testing companies. Our project aims at bringing manufacturing of filters and masks to the UK, lowering the cost and developing a roll-to-roll process of additive manufacturing using low-cost, abundant and environmentally-friendly materials. The principal idea of this project is to select, after testing, a range of natural-fibre cloths, to be used as substrate for additive manufacturing. Such substrates will be coated with a novel porous layer with functional groups trapping the COVID-19 and other high-risk viruses. Electrospinning is proposed as our additive manufacturing technique, where the assembly of coating layer(s) and cloth substrate will protect against the virus by filtering it, depending on porosity, pore size, fibre orientation, coating layer thickness and functional groups of coating and cloth. The proposed project includes the following tasks: (a) molecular simulations to screen materials and functional groups in terms of their binding energy with the virus spike; (b) continuum infiltration mechanics simulations to investigate the virus migration through the porous material assembly, as well as the air flow for breathing in the case of masks or air flow filters; (c) development of the electrospinning to a continuous roll-to-roll process; (d) material and product testing.