Modeling ongoing SARS-CoV2 vaccination strategies in light of emerging data on immunity and viral evolution
- Funded by National Institutes of Health (NIH)
- Total publications:0 publications
Grant number: 3R01GM124280-04S1
Grant search
Key facts
Disease
COVID-19Start & end year
20182023Known Financial Commitments (USD)
$173,135Funder
National Institutes of Health (NIH)Principal Investigator
Benjamin A LopmanResearch Location
United States of AmericaLead Research Institution
N/AResearch Priority Alignment
N/A
Research Category
Epidemiological studies
Research Subcategory
Disease transmission dynamics
Special Interest Tags
N/A
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
SUMMARY While SARS-CoV-2, the pathogen causing COVID-19, continues to spread, the rapid development and deployment of effective vaccines provide a means by which we can reduce its future impact. Initial vaccines have shown to be highly effective, however, the current emergence of new SARS-CoV-2 variants, together with indications that of waning immunity, means that continued repeat vaccinations are likely to be required. Here, we will build upon resources we have already developed from our ongoing project aimed at modeling potential norovirus vaccines and our previous work aimed at modeling the impact of vaccination for SARS-CoV-2 Our team has made contributions and investigated the relative population impacts of SARS-CoV-2 vaccines with different mechanisms of action; characterized patterns of virus evolution that have the potential to impact vaccine efficacy and escape; and, examined initial strategies for vaccine deployment with the aim of relaxing social distancing guidelines. We will leverage these data and modeling tools and build on this work to assess more fully the patterns of immune waning and virus evolution. We will then use these data and results and combine them with our existing SARS-CoV-2 vaccine simulation model to inform the building and the calibration of an extended model. This extended model will account for waning immunity to SARS-CoV-2 and its viral evolution. Our model will inform rapidly emerging scientific questions around continued SARS-CoV-2 vaccination and re-vaccination strategies, including both boosting and vaccine reformulation.