PFI-TT: Developing next-generation cryopreservation media for natural killer cells

  • Funded by National Science Foundation (NSF)
  • Total publications:0 publications

Grant number: 2042111

Grant search

Key facts

  • Disease

    COVID-19
  • Start & end year

    2021
    2023
  • Known Financial Commitments (USD)

    $250,000
  • Funder

    National Science Foundation (NSF)
  • Principal Investigator

    Allison Hubel
  • Research Location

    United States of America
  • Lead Research Institution

    University of Minnesota-Twin Cities
  • Research Priority Alignment

    N/A
  • Research Category

    Therapeutics research, development and implementation

  • Research Subcategory

    Pre-clinical studies

  • Special Interest Tags

    Innovation

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

The broader impact/commercial potential of this Partnerships for Innovation - Technology Translation (PFI-TT) project seeks to produce an effective, non-toxic preservation strategies for natural killer (NK)immune cells. NK therapies are composed of living cells that survive for only hours or days outside the body. Without cryopreservation, these therapies can only be administered to a limited number of patients close to the sites of cell collection and manufacturing. As the number of NK cell therapy trials grows, including emerging clinical trials to treat COVID-19, cryopreservation is essential to allow these life-saving therapies to reach a larger number of patients. By enabling cryopreservation of NK therapies, the proposed nkCube product would allow these therapies to be made available off-the-shelf and transported to any hospital or clinic, enabling wider use of this therapy. The nontoxic formulation of nkCube will also facilitate the growth of NK therapies. Cells will be stable in the solution for several hours, allowing for scale-up in batch production, which in turn could decrease the cost of these therapies. While traditional therapies are preserved in a toxic solution that can cause life-threatening side effects, especially in children and smaller patients, nkCube will be formulated with molecules that are safe for human infusion. Overall, the proposed nkCube technology aims to address issues involving the safety, quality and availability of NK therapies, and would allow these therapies to be accessible to a larger population of patients.


Currently, the NK cell type survives for only a few hours outside of the body. Current methods of NK preservation result in poor post-thaw tumor killing function, which limits the effectiveness of the treatment. In order to achieve product-market fit, the team will address key hurdles identified in the customer discovery process, including the need to optimize a preservation solution for NK cell survival and function, the need to design a protocol compatible with a variety of workflows, and the need to perform scaled manufacturing and external testing of the final product. This PFI-TT project aims to translate a prototype NK cell preservative into a minimum viable product (nkCube) that meets the needs of NK cell manufacturers. Better methods of preserving these cells may aid in the biomanufacturing of the cells and should reduce the overall cost of producing this type of product. A successful outcome of this study will demonstrate the proof of concept for this preservation process.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.