RAPID: Rapid Creation of a Data Product for the World's Specimens of Horseshoe Bats and Relatives, a Known Reservoir for Coronaviruses

  • Funded by National Science Foundation (NSF)
  • Total publications:1 publications

Grant number: 2033973

Grant search

Key facts

  • Disease

    Unspecified
  • Start & end year

    2020
    2022
  • Known Financial Commitments (USD)

    $199,999
  • Funder

    National Science Foundation (NSF)
  • Principal Investigator

    Austin Mast
  • Research Location

    United States of America
  • Lead Research Institution

    Florida State University
  • Research Priority Alignment

    N/A
  • Research Category

    Animal and environmental research and research on diseases vectors

  • Research Subcategory

    Animal source and routes of transmission

  • Special Interest Tags

    Data Management and Data Sharing

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

The award to Florida State University will support research contributing to the development of georeferenced, vetted, and versioned data products of the world's specimens of horseshoe bats and their relatives for use by researchers studying the origins and spread of SARS-like coronaviruses, including the causative agent of COVID-19. Horseshoe bats and other closely related species are reported to be reservoirs of several SARS-like coronaviruses. Species of these bats are primarily distributed in regions where these viruses have been introduced to populations of humans. Currently, data associated with specimens of these bats are housed in natural history collections that are widely distributed both nationally and globally. Additionally, information tying these specimens to localities are mostly vague, or in many instances missing. This decreases the utility of the specimens for understanding the source, emergence, and distribution of SARS-COV-2 and similar viruses. This project will provide quality georeferenced data products through the consolidation of ancillary information linked to each bat specimen, using the extended specimen model. The resulting product will serve as a model of how data in biodiversity collections might be used to address emerging diseases of zoonotic origin. Results from the project will be disseminated widely in opensource journals, at scientific meetings, and via websites associated with the participating organizations and institutions. Support of this project provides a quality resource optimized to inform research relevant to improving our understanding of the biology and spread of SARS-CoV-2. The overall objectives are to deliver versioned data products, in formats used by the wider research and biodiversity collections communities, through an open-access repository; project protocols and code via GitHub and described in a peer-reviewed paper, and; sustained engagement with biodiversity collections throughout the project for reintegration of improved data into their local specimen data management systems improving long-term curation.

This RAPID award will produce and deliver a georeferenced, vetted and consolidated data product for horseshoe bats and related species to facilitate understanding of the sources, distribution, and spread of SARS-CoV-2 and related viruses, a timely response to the ongoing global pandemic caused by SARS-CoV-2 and an important contribution to the global effort to consolidate and provide quality data that are relevant to understanding emergent and other properties the current pandemic. This RAPID award is made by the Division of Biological Infrastructure (DBI) using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Publicationslinked via Europe PMC

Digital Extended Specimens: Enabling an Extensible Network of Biodiversity Data Records as Integrated Digital Objects on the Internet.