SBIR Phase II: Stress Pathway Inhibition To Prevent COVID-19 Infection (COVID-19)
- Funded by National Science Foundation (NSF)
- Total publications:0 publications
Grant number: 2150149
Grant search
Key facts
Disease
COVID-19Start & end year
20222024Known Financial Commitments (USD)
$990,000Funder
National Science Foundation (NSF)Principal Investigator
Donald DavidsonResearch Location
United States of AmericaLead Research Institution
CREATIVE BIOTHERAPEUTICS LLCResearch Priority Alignment
N/A
Research Category
Therapeutics research, development and implementation
Research Subcategory
Pre-clinical studies
Special Interest Tags
N/A
Study Type
Unspecified
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project advance the treatment of COVID-19. A viral infection like that leading to COVID-19 creates stress on cells similar to cancer, obesity, diabetes and aging. This project advances a single non-toxic injection for critical patients to reduce cellular stress, block virus infection, and increase survival. In addition, this biologic therapy is also effective against the SARS-CoV-2 mutations, Ebola, and Influenza A. This has the potential to transform treatment for virus infections and cancer therapy.
This Small Business Innovation Research (SBIR) Phase II project advances a treatment to end COVID-19 by blocking the SARS-CoV-2 receptors on lung cells. The project advances discoveries that a survival protein, GRP78, is essential for virus infectivity and that an associated inhibitor can prevent infection. The project optimizes methods to use a lead GRP78 inhibitor to block spike proteins (SPs) of SARS-CoV-2 and mutations, as well as other virus receptor binding domains (RBDs) from binding to receptors and to lung cells. It is anticipated that the efficacy of the lead GRP78 inhibitor to block whole virus SARS-CoV-2, Ebola, and Influenza A viruses' infection on lung cells will exceed 99%.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This Small Business Innovation Research (SBIR) Phase II project advances a treatment to end COVID-19 by blocking the SARS-CoV-2 receptors on lung cells. The project advances discoveries that a survival protein, GRP78, is essential for virus infectivity and that an associated inhibitor can prevent infection. The project optimizes methods to use a lead GRP78 inhibitor to block spike proteins (SPs) of SARS-CoV-2 and mutations, as well as other virus receptor binding domains (RBDs) from binding to receptors and to lung cells. It is anticipated that the efficacy of the lead GRP78 inhibitor to block whole virus SARS-CoV-2, Ebola, and Influenza A viruses' infection on lung cells will exceed 99%.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.