ISOPLEXIS platform for single cell multiplexed functional proteomics of immune cells
- Funded by Wellcome Trust
- Total publications:0 publications
Grant number: 223814/Z/21/Z
Grant search
Key facts
Disease
COVID-19Start & end year
20212024Known Financial Commitments (USD)
$144,590.33Funder
Wellcome TrustPrincipal Investigator
Dr. Claire RoddieResearch Location
United KingdomLead Research Institution
University College LondonResearch Priority Alignment
N/A
Research Category
Pathogen: natural history, transmission and diagnostics
Research Subcategory
Immunity
Special Interest Tags
Innovation
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
The IsoPlexis IsoLight platform is a unique, highly multiplexed single-cell microchip proteomics technology applicable to both basic and clinical research. Quantitative measurement of secreted proteins associated with a broad range of functional profiles is derived from over 1000 live single cells using intracellular protein detection via high-density antibody barcode arrays. It can precisely dissect the functional heterogeneity ('polyfunctionality') of immune cells with genetically and phenotypically identical signatures and several studies have shown that polyfunctionality determined at the single-cell level can identify critical effector cells associated with durable immunity against infections and cancer. Isoplexis analysis of polyfunctionality in the cell therapy space reveals that phenotypically similar T-cells can have heterogeneous functions and that the 'polyfunctionality index' can provide predictive signatures for toxicity and response to treatment. This state-of-the-art equipment will be housed at the UCL Royal Free Campus and will be used primarily for disease-focused and translational immunology research spanning the disciplines of immunotherapy, autoimmmunity, immunodeficiency, infection (including COVID-19) and cancer. This breakthrough single cell proteomics analysis platform will enable immunology and immunotherapy scientists at UCL to further enhance their understanding of endogenous and engineered human immune cells subsets in the pathophysiology of disease and in the response to treatment.