Targeting the mitochondria in COVID-19 pneumonia: The cardiopulmonary effects of a SARS-CoV-2 mitochondriopathy
- Funded by Canadian Institutes of Health Research (CIHR)
- Total publications:0 publications
Grant number: 202203MM1
Grant search
Key facts
Disease
COVID-19Start & end year
20222024Known Financial Commitments (USD)
$325,155.6Funder
Canadian Institutes of Health Research (CIHR)Principal Investigator
N/A
Research Location
CanadaLead Research Institution
Queen's UniversityResearch Priority Alignment
N/A
Research Category
Pathogen: natural history, transmission and diagnostics
Research Subcategory
Pathogen morphology, shedding & natural history
Special Interest Tags
N/A
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
COVID-19 is an acute respiratory illness caused by SARS-CoV-2. COVID-19 has caused > 223 million infections and >4.1 million deaths. Most infected people are mildly symptomatic; however, ~5% suffer respiratory failure requiring hospitalization and 1.5% die, usually of hypoxia (low blood oxygen) and lung injury. While vaccines offer hope, mutant viruses may evade vaccine protection and 20% of the population remain vaccine hesitant. COVID-19 is the third coronavirus to emerge in 20 years; and yet we lack understanding of coronavirus pneumonia or curative therapies. In 2020, we discovered that SARS-CoV-2 may worsen COVID-19 pneumonia by targeting mitochondria in airway epithelial cells (AEC) and pulmonary artery smooth muscle cells (PASMC). Mitochondria are not just the powerhouse of the cell; they also control programmed cell death (apoptosis) and regulate hypoxia (hypoxic pulmonary vasoconstriction; HPV). SARS-CoV-2 damages mitochondria causing excessive AEC apoptosis and inhibiting HPV which worsens lung injury and hypoxemia. Our team has expertise in mitochondrial biology, SARS-CoV-2, virology, transcriptomics, synthetic chemistry, molecular imaging and disease pathogenesis. As part of a new collaboration with a SARS-CoV-2 expert at the Vaccine and Infectious Disease Organization (VIDO), we are testing the impact of replicating SARS-CoV-2 on mitochondria (structure/function/gene expression) in lung cells and assessing the effects of novel drugs that could treat COVID-19 mitochondriopathy in a SARS-CoV-2 hamster model. We also study conserved mechanisms of coronavirus cardiopulmonary toxicity using human (HCoV-OC43) and mouse (MHV-1) coronaviruses. Our in-silico drug discovery pipeline has identified new apoptosis inhibitors which, along with drugs repurposed to enhance HPV, we will test in two preclinical COVID-19 models. This research will identify the role of mitochondria in coronavirus pneumonia and create mitochondria-targeted therapies for COVID-19.