Acute Respiratory Mortality Surveillance (ARMS) for Coronavirus Infection (COVID-19): A globally relevant technology to strengthen mortality surveillance for acute respiratory deaths in many countries lacking complete medical certification of death

  • Funded by Canadian Institutes of Health Research (CIHR)
  • Total publications:239 publications

Grant number: Unknown

Grant search

Key facts

  • Disease

    COVID-19
  • start year

    2020
  • Known Financial Commitments (USD)

    $717,240
  • Funder

    Canadian Institutes of Health Research (CIHR)
  • Principal Investigator

    N/A

  • Research Location

    Canada, China
  • Lead Research Institution

    Unity Health Toronto
  • Research Priority Alignment

    N/A
  • Research Category

    Epidemiological studies

  • Research Subcategory

    Disease surveillance & mapping

  • Special Interest Tags

    N/A

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Unspecified

  • Occupations of Interest

    Unspecified

Abstract

The current global infectious threat, COVID-19, has not yet been widely detected in sub-Saharan Africa or other low income countries in Asia. It is almost inevitable that it will reach those places. While unusual spikes in infection-related deaths can register quickly in higher income countries and in China, they can go unrecognized for weeks or months in low-income settings where even very ill people do not go to a hospital, infecting others. Detecting a mortality signal is important and may be the first step in recognizing a serious outbreak. We propose to build on our extensive experience using verbal autopsy (VA) in the long-running Indian Million Death Study, and ongoing studies in China, Hong Kong, Ethiopia and Sierra Leone to develop an enhanced verbal autopsy module to identify deaths from COVID-19. This will serve as a model for the next novel pathogen-as near as possible to real time in settings without routine medical certification of death. We will test three hypotheses: #1 An "Acute Respiratory Mortality Surveillance" (ARMS) module can be added quickly to the WHO VA instrument and validated against hospitalized cases and deaths (paired with epidemiological information and machine learning) to distinguish COVID-19 from other causes of respiratory deaths. #2 Early deployment of ARMS in China, Hong Kong, India, Sierra Leone, and Ethiopia will help establish baseline distributions of usual acute respiratory deaths, as a comparator for COVID-19 deaths, and to inform modelling. #3 Effective knowledge translation of an open-source, widely-available ARMS module will improve the global response to COVID-19, particularly in the lowest income countries and help to improve mortality assessments for any subsequent COVID-19 waves. A successful ARMS will contribute to stopping the current outbreak and add novel surveillance tools. All materials and results will be made available globally to ensure the broadest use.

Publicationslinked via Europe PMC

Last Updated:an hour ago

View all publications at Europe PMC

Development and Validation of the Intimate Partner Violence Workplace Disruptions Assessment (IPV-WDA).

Elucidating directed neural dynamics of scene construction across memory and imagination

Implementing a Novel Resident-Led Peer Support Program for Emergency Medicine Resident Physicians.

Cross-Activity Analysis of CRISPR/Cas9 Editing in Gene Families of <i>Solanum lycopersicum</i> Detected by Long-Read Sequencing.

Creating health systems citizens: enhanced professional identity formation through a para-curricular distinction track in health systems transformation and leadership.

A Comparison of Clinical Diagnostic Classification Criteria Used in Longitudinal Cohort Studies of the Alzheimer's Disease Continuum: A Systematic Review.

Identification and Characterization of a Rare Exon 22 Duplication in <i>CFTR</i> in Two Families.

Structural Rearrangement in Cyclic Cu(II) Pyridyltriazole Complexes: Oxidation of Dabco to Oxalate and CO<sub>2</sub> Conversion to Carbonate.

Administration of FOLFIRINOX for Advanced Pancreatic Cancer: Physician Practice Patterns During Early Use.