High-throughput digital microplate microscopy reader for the study of cellular responses to infection and stress

  • Funded by UK Research and Innovation (UKRI)
  • Total publications:0 publications

Grant number: MR/X013588/1

Grant search

Key facts

  • Disease

    mpox
  • Start & end year

    2022
    2023
  • Known Financial Commitments (USD)

    $198,023.78
  • Funder

    UK Research and Innovation (UKRI)
  • Principal Investigator

    Gill Elliott
  • Research Location

    United Kingdom
  • Lead Research Institution

    University of Surrey
  • Research Priority Alignment

    N/A
  • Research Category

    Pathogen: natural history, transmission and diagnostics

  • Research Subcategory

    Pathogen morphology, shedding & natural history

  • Special Interest Tags

    N/A

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

  • Mpox Research Priorities

    Pathogen: natural history, transmission and diagnostics

  • Mpox Research Sub Priorities

    Research for enhanced understanding of the disease

Abstract

Viruses require living cells to multiply. When doing so, viruses cause a complete re-organisation of the infected cell, overall allowing the production of thousands of new viral particles but also suppressing the ability of the host to fight infection. Crucial insights into this complex interplay can be obtained imaging living cells and viruses, which is only possible using microscopes. Most microscopes are, however, able to image a few cells at a time making it very lengthy and laborious to obtain information from a representative number of cells. In addition, cells undergo their own life cycle and variations exist between them even in the same petri dish. A way to overcome this problem is the use of high-throughput microscopes able to image thousands of cells and analyse their properties on an individual basis. This proposal concerns the acquisition of one of such imaging systems for the Section of Virology at the University of Surrey, a unit of research formed by >20 investigators from 6 different groups studying human viruses and their interplay with human cells. The instrument we propose to acquire will enable us to track where viruses go inside a cell and how they manipulate the intracellular environment. We will be able to visualise viral features such as gene expression and replication factories, as well as the cell's response to infection in the form of stress granules, mitochondrial reorganisation and cell and nucleus morphology. More importantly, we will be able to measure these events qualitatively and quantitatively in hundreds of individual cells in specified conditions, generating high quality reproducible data in a short period of time. As examples, we have recently discovered a viral protein expressed in poxviruses (including the emerging monkeypox virus) that induces the clustering of mitochondria (the energy factories of the cell). The kinetics of assembly and disassembly as well as the size and morphology of these clusters in different conditions remains unknown but can be elucidated with a high-throughput multimode microscopy unit. Similarly, we have recently discovered that cells infected with herpes simplex virus fail to export their mRNAs from the nucleus, causing a blockade of cellular functions that allows efficient virus infection. The mechanisms behind this process are unclear but can be researched with an imaging system equipped with a spot counting module. Altogether the requested instrument will not only increase our capacity to deliver ground-breaking research, but also provide novel perspectives on viral infection that are at present not possible with other equipment.