A modular platform for infectious disease surveillance at point-of-need.
- Funded by National Institutes of Health (NIH)
- Total publications:0 publications
Grant number: 5R44AI150263-02
Grant search
Key facts
Disease
Ebola, Marburg virus disease…Start & end year
20202022Known Financial Commitments (USD)
$291,649Funder
National Institutes of Health (NIH)Principal Investigator
CHIEF SCIENTIFIC OFFICER Jay FisherResearch Location
United States of AmericaLead Research Institution
REDBUD LABS, INC.Research Priority Alignment
N/A
Research Category
Pathogen: natural history, transmission and diagnostics
Research Subcategory
Diagnostics
Special Interest Tags
Innovation
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
ABSTRACT We propose to develop a point-of-need system for differential molecular identification of filoviruses from syndromically similar infections. Our goal is to enable rapid, sensitive, and specific identification of quarantinable infections to reduce nosocomial risk and improve outbreak response. The platform will simultaneously test 12 genomic markers at the genus and strain level using a modular microfluidic design that allows for rapid panel update and expansion. In Phase I we will develop an assay for pan-filovirus (pFi), followed by expansion of the panel and system integration in Phase II. The expanded panel will add pan-flavivirus (pFa) and pan-Plasmodium (pPa) detection as well as strain-specific targets for Ebola, Marburg, Dengue, Yellow Fever, and Malaria. Strain specific tests will enable better patient triage/treatment during an outbreak and improve disease surveillance in non-outbreak settings. The panel will require a 50 μL sample of whole blood and will achieve highly specific detection in < 30 minutes. To achieve this goal, we will combine Redbud Labs’ expertise in microfluidics and systems with the diagnostic development expertise of the Diagnostics Program at PATH (Seattle, WA), and the VHF testing/processing capabilities of the Connor Lab at Boston University (part of the BSL-4 facilities at NEIDL).