Anchimerically Activatable Anti-Zika/Dengue ProTides
- Funded by National Institutes of Health (NIH)
- Total publications:0 publications
Grant number: 1R01AI146049-01A1
Grant search
Key facts
Disease
Zika virus disease, Congenital infection caused by Zika virusStart & end year
20212026Known Financial Commitments (USD)
$670,946Funder
National Institutes of Health (NIH)Principal Investigator
PROFESSOR CARSTON WAGNERResearch Location
United States of AmericaLead Research Institution
UNIVERSITY OF MINNESOTAResearch Priority Alignment
N/A
Research Category
Therapeutics research, development and implementation
Research Subcategory
Pre-clinical studies
Special Interest Tags
Innovation
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
Arboviruses such as, Dengue (DENV) and Zika (ZIKV), have been associated with several global epidemics. DENV infections can result in a mild fever to potentially fatal dengue shock syndrome, dengue hemorrhagic fever and death, while ZIKV infections can result in congenital microcephaly and the development of autoimmune diseases. Initial clinical manifestation of DENV and ZIKV disease are similar and co-infections have been reported. Most challenging, DENV and ZIKV are known to co-circulate, increasing the probability of co-infections, and thus the potential for severe disease. Consequently, since there is no effective vaccine or form of treatment for either virus, the development of anti-ZIKV and anti-DENV therapeutics is an urgent unmet medical need. Over the past decade prodrugs of nucleotides, referred to as ProTides, have been found to have potent antiviral activity. The anti-hepatitis C virus (HCV) drug sofosbuvir (FDA approved 2013) is the most notable ProTide success, since its use in combination therapy can clear Hepatis C virus infections. Recently, a similar ProTide, remdesivir, has been approved by the FDA, Japan, the European Union an Australia for the treatment of severe SARs-CoV-2 infections by intravenous injection. Carboxyesterase-anhydride-HINT1 (CAH) ProTides, such as sofosbuvir and remdesivir, utilize a four step activation process based on initial esterase hydrolysis, carboxylic acid nucleophilic attack at the phosphorous and release of phenol, followed by mixed anhydride chemical hydrolysis, and finally phosphoramidate hydrolysis by hHINT1. Unfortunately, although they can be dosed intravenously, due to high first pass metabolism, CAH-Protides are limited in their use as oral drugs to viral hepatitis. Furthermore, due to the high carboxyesterase activity of rodent plasma, it has been difficult to carry out pre-clinical studies with rodents and translationally relevant dosages of CAH-ProTides. To address the inherent issues surrounding current ProTide approaches, our group has designed an alternative ProTide approach, we refer to as anchimerically HINT1 activated proTides (AHA-ProTides). Our laboratory has demonstrated that AHA-proTides can be designed that are stable, orally bioavailable, cell permeable and dependent on HINT phosphoramidate hydrolysis. Recently, we have also demonstrated that AHA proTides can be prepared with enhanced potency against DENV and ZIKV. Consequently, we propose to the design and develop anti-DENV and anti-ZIKV AHA ProTides that can serve as advanced lead compounds for the potential treatment of both DENV and ZIKV disease.