Immunity to Live Mosquito Probing and Flavivirus Infection in Human Skin
- Funded by National Institutes of Health (NIH)
- Total publications:0 publications
Grant number: 3R21AI147017-02S1
Grant search
Key facts
Disease
Zika virus disease, DengueStart & end year
20202022Known Financial Commitments (USD)
$293,034Funder
National Institutes of Health (NIH)Principal Investigator
PROFESSOR,PROFESSOR Simon Barratt-BoyesResearch Location
United States of AmericaLead Research Institution
UNIVERSITY OF PITTSBURGH AT PITTSBURGHResearch Priority Alignment
N/A
Research Category
Pathogen: natural history, transmission and diagnostics
Research Subcategory
Pathogen morphology, shedding & natural history
Special Interest Tags
N/A
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Unspecified
Vulnerable Population
Unspecified
Occupations of Interest
Unspecified
Abstract
Abstract Arthropod-borne viruses represent a major threat to humans on a global scale, and of these flaviviruses transmitted by Aedes aegypti mosquitoes are the most significant risk to human health. Understanding the immunologic events that take place in the human host, particularly in the skin where virus is transmitted during mosquito feeding, represents a major gap in our understanding of arbovirus disease. Addressing this gap is a central theme of the Funding Opportunity PAR-18-860, “Immune Response to Arthropod Blood Feedingâ€Â, and is the goal of the current proposal. To best define these events, we propose a transdisciplinary study between the Barratt-Boyes lab, with expertise in human skin immunology, and the Vasilakis lab, with expertise in arbovirology and mosquito-virus-host interactions. The Barratt-Boyes group has established an ex vivo model of dengue (DENV) and Zika virus (ZIKV) infection in human skin using large-area explants from anonymous healthy donors, and have defined the immunologic events that occur in skin in the absence of mosquito probing. The unique access of the Vasilakis group to insectary facilities approved for working with live Aedes spp. infected with DENV or ZIKV allows us to now explore the contribution of the mosquito to viral pathogenesis. Thus, we will bring together three essential components â€Â" live mosquitoes, human skin, and pathogenic viruses â€Â" to address for the first time the immunologic events that occur during vector-borne transmission of flaviviruses in human skin. This is a truly innovative proposal; to our knowledge, no publications exist describing the response of human skin to pathogenic flaviviruses transmitted by live mosquitoes, and no other research group has an experimental system such as ours to fill this research gap. We have two specific aims: (1) what is the immune response of human skin to mosquito probing in the absence of virus, and (2) how does mosquito probing affect DENV and ZIKV replication and spread in human skin. The results of our study will have a strong and lasting impact on the field of immunology and transmission of vector-borne pathogens. The work will establish the ex vivo mosquito-skin-virus system as a foundation for future studies on pathogenesis, therapy and vaccine development.