Development of 4-(aroylamino)piperidine-based entry inhibitors as anti-influenza therapeutics
- Funded by National Institutes of Health (NIH)
- Total publications:0 publications
Grant number: 5R42AI155039-03
Grant search
Key facts
Disease
UnspecifiedStart & end year
20212025Known Financial Commitments (USD)
$999,369Funder
National Institutes of Health (NIH)Principal Investigator
Lijun RongResearch Location
United States of AmericaLead Research Institution
CHICAGO BIOSOLUTIONS, INC.Research Priority Alignment
N/A
Research Category
Therapeutics research, development and implementation
Research Subcategory
Pre-clinical studies
Special Interest Tags
N/A
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
Influenza A viruses belong to the orthomyxoviridae family, and have a negative-sense, segmented RNA genome, which can cause seasonal or pandemic flu with high morbidity and significant mortality. Vaccination is the most prevalent prophylactic means for controlling influenza infections. However, an effective vaccine usually takes at least six months to develop. Furthermore, vaccination has limited effectiveness in the treatment of immunocompromised patients, and its effectiveness is also limited during a pandemic. The current therapeutic options for flu infections are all based on the neuraminidase inhibitors (NAIs; oseltamivir, zanamivir and peramivir), while the influenza M2 ion channel blockers (amantadine and rimantadine) are not now recommended since all of the circulating influenza strains have acquired resistance. (Xofluza, a polymerase acidic endonuclease inhibitor, has just been approved in 2018 and is yet untried during a flu season.) The rapid emergence of the NAI-resistant strains of influenza A viruses strongly suggests that NAIs alone may not be sufficient as effective therapies, and thus new treatment options targeting the other viral/host factors are urgently needed. This application defines a plan to develop potent, small molecule inhibitors, which block entry of influenza A viruses. We have identified compounds that inhibit entry of infectious influenza A viruses, with IC50 values in the nanomolar range. We have synthesized structurally diverse analogs of the anti-influenza hit series using structure-activity relationships (SARs) to improve potency and selectivity; validated the lead inhibitor candidates in the infectious assay and investigated the mechanism of action (MOA) of the these inhibitors; and selected anti-influenza inhibitors with excellent in vitro potency and selectivity values and druglike in vivo pharmacokinetic properties. In this Fast Track STTR Phase I &II application, we propose four specific aims: (1) optimize the lead scaffold and select development candidates; (2) investigate the mechanism of action (MOA) of the advanced lead compounds with HA proteins; (3) evaluate the pharmacokinetics/toxicokinetics of the advanced lead compounds; and (4) preclinical development.