MULTIVALENT QS-18 PROTEIN NANOPARTICLES FOR A BROADLY PROTECTIVE INFLUENZA VIRUS VACCINE

  • Funded by National Institutes of Health (NIH)
  • Total publications:0 publications

Grant number: 75N93023C00031-0-9999-1

Grant search

Key facts

  • Disease

    Influenza caused by Influenza A virus subtype H1, Influenza caused by Influenza A virus subtype H3
  • Start & end year

    2023
    2025
  • Known Financial Commitments (USD)

    $599,806
  • Funder

    National Institutes of Health (NIH)
  • Principal Investigator

    KENTNER SINGLETON
  • Research Location

    United States of America
  • Lead Research Institution

    POP BIOTECHNOLOGIES, INC
  • Research Priority Alignment

    N/A
  • Research Category

    Vaccines research, development and implementation

  • Research Subcategory

    Pre-clinical studies

  • Special Interest Tags

    N/A

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

The COVID-19 pandemic has underscored the importance of not only vaccines but also vaccine adjuvants. Plant saponins have yielded some of the most powerful vaccine adjuvants to date. This project seeks to combine and develop QS-18, a commercially viable and highly abundant saponin, with spontaneous nanoliposome antigen particlization technology based on cobalt porphyrin-phospholipid (CoPoP), which has demonstrated its clinical application and entered Phase III clinical trials. Influenza will be used as a model disease to study the advantages of QS-18. The project will provide pilot data necessary to clinical translation focused on toxicity (mouse and rabbits) and efficacy (mouse and ferrets) through the following objectives: (1) Produce and procure well-characterized CoPoP/QS-18 liposomes, displaying influenza hemagglutinin (HA) and neuraminidase (NA) antigens; (2) Characterize concentration of components of CoPoP/QS-18 liposomes; (3) Determine storage stability of components of CoPoP/QS-18 liposomes; (4) Determine pilot toxicity of CoPoP/QS-18 liposomes and CoPoP/QS-21 liposomes; (5) Compare CoPoP/QS-18 to CoPoP/QS-21 for inducing antigen-specific antibodies and antigen specific cellular responses following mouse immunization; (6) Assess how CoPoP/QS-18 induces protective immune responses in a mouse challenge using mouse adapted H1, H3, and B influenza virus strains; (7) Assess protection from influenza virus challenge in ferrets.