Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
- Funded by National Institutes of Health (NIH)
- Total publications:0 publications
Grant number: 5R01GM140564-05
Grant search
Key facts
Disease
COVID-19, Ebola…Start & end year
20212024Known Financial Commitments (USD)
$413,057Funder
National Institutes of Health (NIH)Principal Investigator
RESEARCH ASSISTANT PROFESSOR Jessie EdwardsResearch Location
United States of AmericaLead Research Institution
UNIV OF NORTH CAROLINA CHAPEL HILLResearch Priority Alignment
N/A
Research Category
Epidemiological studies
Research Subcategory
Disease surveillance & mapping
Special Interest Tags
Data Management and Data Sharing
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
PROJECT SUMMARY When an outbreak of an established or emerging infectious disease occurs we ask a standard set of questions that are critical to a lifesaving public health response: Where will future incidence occur? How many cases will there be? And where can we most effectively intervene? The proposed research is motivated by real world instances where answering these questions was critical to making practical public health decisions, and current methods came up short: from deciding if and where to build additional Ebola Treatment Units in the 2014-15 West African Ebola epidemic, to identifying priority districts where oral cholera vaccine should be used in the 2016-17 cholera outbreak in Yemen, to picking locations where sufficient cases might occur to selecting and prioritizing interventions to slow the spread of COVID-19 worldwide. Forecasts informing such decisions are typically generated either using an epidemic model that relies on knowledge of the disease transmission mechanism and epidemic theory or using a statistical model to project the expected number of cases based on the relationship between covariates and observed counts. However, both approaches are subject to limitations, particularly early in an epidemic when few cases are observed. This project is based on the overarching scientific premise that inferences that combine the strengths of mechanistic epidemic models and statistical covariate models will substantially outperform either approach alone in forecasting and making decisions to confront emerging infectious disease threats. Specifically, this project aims to (1) Develop a framework to forecast incidence in ongoing outbreaks that merges mechanistic and machine learning approaches; (2) Validate the framework using retrospective data and apply the framework to inform decision making in emerging epidemics; (3) Integrate this inferential forecasting framework into causal decision theory to optimize critical actions in the public health response to emerging epidemics; and (4) Develop accessible and extensible tools for forecasting and decision analysis in infectious disease epidemics. We will validate these approaches using rigorous simulation studies and by applying the proposed approaches to retrospective data from important recent epidemics (e.g., Ebola, Cholera and COVID-19, as mentioned above). We will prospectively apply our approach to inform the response to emerging disease threats that occur during the project period, including the ongoing COVID-19 pandemic. To ensure that the tools developed are useful, efficient, and user friendly, we will work with international humanitarian organizations responding to epidemics. Successful completion of these aims will provide a flexible and validated framework for forecasting and decision making during ongoing epidemics, while allowing for innovation in mechanistic and statistical approaches. In doing so it will provide tools to optimize responses and reduce morbidity and mortality during public health crises.