Virus Inhibition by siRNA Optimized by NMR

Grant number: 101081838

Grant search

Key facts

  • Disease

    COVID-19
  • Start & end year

    2022
    2024
  • Known Financial Commitments (USD)

    $150,000
  • Funder

    European Commission
  • Principal Investigator

    SALMON Loic
  • Research Location

    France
  • Lead Research Institution

    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
  • Research Priority Alignment

    N/A
  • Research Category

    Pathogen: natural history, transmission and diagnostics

  • Research Subcategory

    Pathogen genomics, mutations and adaptations

  • Special Interest Tags

    Innovation

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

The last two years, profoundly marked by the COVID-19 sanitary crisis, have demonstrated the difficulties to answer adequately to the emergence of novel pathogenic viruses. Today, no broad-spectrum antiviral exists similar to antibiotics targeting bacteria. Repositioning of existing molecules had limited success despite intense initial hopes. Vaccines have played a major role in fighting the pandemic and limiting the impact of the virus, however it remains insufficient to end the pandemic, due to many factors including their worldwide uneven accessibility, their intrinsic efficiency towards different variants and the complex socio-political context related to mass vaccination. There is therefore an urgent need of novel approaches to design molecules targeting viruses and in particular SARS-CoV-2. To answer this challenge, we propose a novel strategy derived from fundamental research on small interfering RNA (siRNA). This project derives from the ERC Starting Grant PARAMIR, in which novel structural biology approaches are proposed to understand the mechanism of recognition of a similar class of RNA involved in numerous diseases, especially cancer. Our approach combines the latest advances in SARS-CoV-2 virology and structural biology to propose efficient and specific molecules active towards a broad range of SARS-CoV-2 current and future variants. If successful the project will lead to a class of siRNA, with optimized specificity and stability, validated in vitro and ex-vivo in a reconstituted human airway epithelial model, and ready for testing towards pre-clinical and clinical stage. Finally, the strategy proposed here will be on a longer term applicable to multiple other pathogenic viruses.