Reliable Epidemic monitoring And Control under geographic and demographic heTerogeneities

Grant number: 101062523

Grant search

Key facts

  • Disease

    COVID-19
  • Start & end year

    2022
    2025
  • Known Financial Commitments (USD)

    $305,928
  • Funder

    European Commission
  • Principal Investigator

    JOHANSSON Karl
  • Research Location

    Sweden
  • Lead Research Institution

    KUNGLIGA TEKNISKA HOEGSKOLAN
  • Research Priority Alignment

    N/A
  • Research Category

    Epidemiological studies

  • Research Subcategory

    Impact/ effectiveness of control measures

  • Special Interest Tags

    N/A

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Unspecified

  • Vulnerable Population

    Unspecified

  • Occupations of Interest

    Unspecified

Abstract

The current COVID-19 crisis has highlighted the failure of existing epidemic monitoring techniques in timely predicting the epidemic situation and facilitating efficient policy recommendations. Because of being open-loop or linearization-based, these techniques cannot handle model and data uncertainties effectively. Designing a feedback mechanism to enable reliable, closed-loop epidemic monitoring is crucial but challenging because of the nonlinearity and heterogeneities of the epidemic spread process. The control mechanisms for epidemic mitigation are well-known, such as testing, lockdown, social distancing, etc. However, when, where, and to what extent should the health authority implement these policies depends on the accurate estimation and forecasting of the epidemic situation, which is very difficult with the classic observer design techniques. To alleviate the difficulties posed by these observers, an interdisciplinary approach of physics-informed neural network (PINN) in combination with system-theoretic tools is proposed in this project for closed-loop epidemic monitoring that can effectively cope with uncertainties. The task of PINN is to estimate the unknown nonlinearity (i.e., disease transmission rate) and epidemic parameters by using both the physics of epidemic spread (i.e., model) and the past epidemiological data. The closed-loop structure copes with the uncertainties and validates the estimation algorithm in real-time by predicting the future data and adjusting the epidemic model accordingly. The information received by the PINN-based observer will be utilized by the optimal controller to devise optimal policy recommendations under socio-economic constraints for epidemic mitigation. The closed-loop epidemic monitoring and control technique will be integrated to understand the geographic and demographic heterogeneities during epidemic outbreaks, which will significantly enhance the effectiveness of optimal policies.