BIO-PROTECT-Mask - Bio-aerosol protection by ready-to-use and optimized protective masks for high and low risk patients - Investigation, design and prototyping of protective masks with optimized breathing resistance and comfort (MaskPRO)

  • Funded by Bundesministerium für Bildung und Forschung [German Federal Ministry of Education and Research] (BMBF)
  • Total publications:0 publications

Grant number: 01KI20241C

Grant search

Key facts

  • Disease

    COVID-19
  • Start & end year

    2020
    2021
  • Known Financial Commitments (USD)

    $99,116.55
  • Funder

    Bundesministerium für Bildung und Forschung [German Federal Ministry of Education and Research] (BMBF)
  • Principal Investigator

    N/A

  • Research Location

    Germany
  • Lead Research Institution

    Junker-Filter GmbH
  • Research Priority Alignment

    N/A
  • Research Category

    Infection prevention and control

  • Research Subcategory

    Barriers, PPE, environmental, animal and vector control measures

  • Special Interest Tags

    N/A

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

Because of the outbreak of COVID-19, many countries have recently regulated by law or strongly advice that face masks should be worn in distinct public environments in order to prevent further spreading of SARS-CoV-2. While there is a vivid discussion on the different types of certified or home-made masks and possible shortages in the supply chains, previous studies in other virus epidemics (influenza) indicate that compliance with wearing face masks and wearing time are the strongest predictors with respect a successful public healthcare intervention. One explanation for low wearing time might be the high pressure loss of most certified face masks that makes breathing difficult and wearing uncomfortable. Especially high-risk patients with chronic lung diseases may suffer from additional breathlessness while requiring a particularly high level of protection. Shortness of certified masks results in low-evidence recommendations for the use of home-made masks, however, it remains unclear whether the used materials provide reasonable protection against the transmission. In-depth studies that identify the best materials and layering are lacking, although experiments that would identify innovative materials with an optimal relationship of bioaerosol deposition and pressure loss might be a solution to improve the real-world effectiveness of mask wearing in public.