Bespoke transition state analog inhibitors of SARS-CoV-2 3CL and PL proteases
- Funded by Canadian Institutes of Health Research (CIHR)
- Total publications:0 publications
Grant number: 429694
Grant search
Key facts
Disease
COVID-19start year
2020Known Financial Commitments (USD)
$286,729.69Funder
Canadian Institutes of Health Research (CIHR)Principal Investigator
Strynadka Natalie CResearch Location
CanadaLead Research Institution
University of British ColumbiaResearch Priority Alignment
N/A
Research Category
Therapeutics research, development and implementation
Research Subcategory
Pre-clinical studies
Special Interest Tags
N/A
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
SARS-CoV-2 is devastating global health and economies. Rapid development of antiviral drugs is critical to treat disease in the short term and beyond. Logical antiviral targets are the proteases 3CLpro and PLpro, responsible for processing of long chains of linked viral proteins produced during viral reproduction. 3CLpro and PLpro are enzymes that harness pac-man like activity to clip the chains into individual proteins. This cleavage process is essential for formation of new disease causing virus. If you block the pac-man activity, you stop the virus in its tracks. Similar types of viruses have been targeted very successfully by drug development in other important global viruses such as HIV. Understanding inhibitor binding to 3CLpro and PLpro at the atomic level is central to antiviral drug development. We are harnessing our significant expertise in xray crystallography and single particle cryoEM, biophsyical techniques that allow us to determine atomic pictures of these proteases in the presence of bound drug. Leveraging our prior work on similar enzymes with international leading antimicrobial pharmaceutical teams we have identified tight binding drug leads that take advantage of the unique features of these enzymes. We aim to optimize these compounds through structure-guided techniques (using our atomic blueprints so to speak) and the antiviral drug discovery pipeline of our industry partner.