AmplificatioN Free Identification of cancer and viral biomarkers via plasmonic nanoparticles and liquid BIOpsy

Grant number: 865819

Grant search

Key facts

  • Disease

    Unspecified
  • Start & end year

    2021
    2026
  • Known Financial Commitments (USD)

    $3,324,577.1
  • Funder

    European Commission
  • Principal Investigator

    Fabris Laura
  • Research Location

    Italy
  • Lead Research Institution

    POLITECNICO DI TORINO
  • Research Priority Alignment

    N/A
  • Research Category

    Clinical characterisation and management

  • Research Subcategory

    Prognostic factors for disease severity

  • Special Interest Tags

    N/A

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

The detection of circulating disease biomarkers in bodily fluids, also known as liquid biopsy, has taken important strides toward the implementation of personalized medicine. However, it still suffers from low sensitivity and high costs, which render its clinical implementation not practical or affordable. In particular, the identification and quantification of oligonucleotide biomarkers is hampered by the need to employ long- and short-read sequencing tools that are expensive, require highly trained personnel, and are prone to error. Nonetheless, the recent clinical breakthroughs demonstrating the importance of detecting cancerous or viral biomarker to susceptibility, onset, and aggressiveness of the disease, motivate the need for further research that could render their detection simpler, cheaper, and thus more widely available. By leveraging the intrinsic amplification capability of surface enhanced Raman scattering (SERS), in ANFIBIO I will address the issues of low sensitivity and high costs by combining plasmonic nanoparticles synthesized ad hoc to maximize SERS signal amplification with direct SERS sensing and machine learning tools for the rapid analysis of the complex spectral responses obtained by screening bodily fluids for specific target biomarkers. I will focus in particular on prostate cancer (PCa) DNA and influenza A viral (IAV) RNA in blood, urine, and saliva, to quantify and correlate their amounts to those detected in tissues and cells. At completion, the proposed work will deliver a breakthrough sensing technology capable of detecting and quantifying cancerous and viral biomarkers in bodily fluids, with minimal sample pretreatment, no target amplification, and that uses SERS as novel and reliable transduction mechanism with distinct advantages over those currently employed. Furthermore, the fundamental insight garnered will likely assess the feasibility of using direct SERS sensing to develop beyond-third generation sequencing technologies.

Publicationslinked via Europe PMC

Last Updated:38 minutes ago

View all publications at Europe PMC

A surface chemistry perspective on SERS: revisiting the basics to push the field forward.

Direct SERS Detection of Nucleic Acids in the Presence of Spermine: A Unified Nanoparticle Platform Allows for the Elucidation of Surface Adsorption Hierarchies.

Challenges and opportunities for SERS in the infrared: materials and methods.

Pumpless deterministic lateral displacement separation using a paper capillary wick.