AmplificatioN Free Identification of cancer and viral biomarkers via plasmonic nanoparticles and liquid BIOpsy
- Funded by European Commission
- Total publications:4 publications
Grant number: 865819
Grant search
Key facts
Disease
UnspecifiedStart & end year
20212026Known Financial Commitments (USD)
$3,324,577.1Funder
European CommissionPrincipal Investigator
Fabris LauraResearch Location
ItalyLead Research Institution
POLITECNICO DI TORINOResearch Priority Alignment
N/A
Research Category
Clinical characterisation and management
Research Subcategory
Prognostic factors for disease severity
Special Interest Tags
N/A
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
The detection of circulating disease biomarkers in bodily fluids, also known as liquid biopsy, has taken important strides toward the implementation of personalized medicine. However, it still suffers from low sensitivity and high costs, which render its clinical implementation not practical or affordable. In particular, the identification and quantification of oligonucleotide biomarkers is hampered by the need to employ long- and short-read sequencing tools that are expensive, require highly trained personnel, and are prone to error. Nonetheless, the recent clinical breakthroughs demonstrating the importance of detecting cancerous or viral biomarker to susceptibility, onset, and aggressiveness of the disease, motivate the need for further research that could render their detection simpler, cheaper, and thus more widely available. By leveraging the intrinsic amplification capability of surface enhanced Raman scattering (SERS), in ANFIBIO I will address the issues of low sensitivity and high costs by combining plasmonic nanoparticles synthesized ad hoc to maximize SERS signal amplification with direct SERS sensing and machine learning tools for the rapid analysis of the complex spectral responses obtained by screening bodily fluids for specific target biomarkers. I will focus in particular on prostate cancer (PCa) DNA and influenza A viral (IAV) RNA in blood, urine, and saliva, to quantify and correlate their amounts to those detected in tissues and cells. At completion, the proposed work will deliver a breakthrough sensing technology capable of detecting and quantifying cancerous and viral biomarkers in bodily fluids, with minimal sample pretreatment, no target amplification, and that uses SERS as novel and reliable transduction mechanism with distinct advantages over those currently employed. Furthermore, the fundamental insight garnered will likely assess the feasibility of using direct SERS sensing to develop beyond-third generation sequencing technologies.
Publicationslinked via Europe PMC
Last Updated:38 minutes ago
View all publications at Europe PMC