Understanding the long-term haematological consequences of infection exposure

Grant number: 224055/Z/21/Z

Grant search

Key facts

  • Disease

    N/A

  • Start & end year

    2023
    2027
  • Known Financial Commitments (USD)

    $368,022.5
  • Funder

    Wellcome Trust
  • Principal Investigator

    Dr. Myriam Haltalli
  • Research Location

    United Kingdom
  • Lead Research Institution

    University of Cambridge
  • Research Priority Alignment

    N/A
  • Research Category

    Pathogen: natural history, transmission and diagnostics

  • Research Subcategory

    Immunity

  • Special Interest Tags

    N/A

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

Infectious disease remains a global health burden. Blood and immune cells play a central role in underlying pathology, however long-term consequences of infection on these cells in otherwise healthy people are unknown. This project aims to understand whether infection modifies cellular programmes, leaving scars on the haematopoietic system, even after recovery, that compromise health in later life. Using a murine influenza model, non-infected, infected and recovered groups (where subjects are administered antiviral treatment post-infection and are analysed after a period of time) will be investigated. By combining a DNA barcoding tool with single cell Multiome analysis of bone marrow cells from these groups, a high dimensional comparison of the transcriptome and epigenome of sister cells will be generated. These data will address fundamental questions including whether cell fate potential is and remains perturbed by infection. Next, following bioinformatic stratification of the data and employing in vitro functional experiments to screen candidate genes using CRISPR-Cas9, molecular targets to be manipulated in vivo will be identified. These experiments will address whether it is possible to mitigate effects of infectious perturbations on the haematopoietic system. Overall, this work will begin to elucidate mechanisms driving the response to infection and highlight potential therapeutic interventions.

Publicationslinked via Europe PMC

Last Updated:38 minutes ago

View all publications at Europe PMC

SIRPα+ PD-L1+ bone marrow macrophages aid AML growth by modulating T cell function