Development of novel broad-spectrum antiviral compounds for use in animals and humans

  • Funded by UK Research and Innovation (UKRI)
  • Total publications:1 publications

Grant number: BB/W003295/1

Grant search

Key facts

  • Disease

    COVID-19, Unspecified
  • Start & end year

    2022
    2024
  • Known Financial Commitments (USD)

    $829,888.5
  • Funder

    UK Research and Innovation (UKRI)
  • Principal Investigator

    Kin-Chow Chang
  • Research Location

    United Kingdom
  • Lead Research Institution

    University of Nottingham
  • Research Priority Alignment

    N/A
  • Research Category

    Therapeutics research, development and implementation

  • Research Subcategory

    Pre-clinical studies

  • Special Interest Tags

    Innovation

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

The current pandemic highlights the need for effective antivirals to treat active infections, in conjunction with vaccines, to prevent infection. We recently made an important discovery of a highly effective broad-spectrum antiviral thapsigargin (TG), a specific inhibitor of the Ca2+ pump located on the cellular organelle endoplasmic reticulum (ER), that could be a game changer in the treatment of major human respiratory viruses: coronavirus (including SARS-CoV-2 that causes COVID-19), influenza virus and respiratory syncytial virus (RSV). TG's host-centred mechanism of action, as opposed to conventional direct acting antivirals, reduces the likelihood of drug resistant mutants emerging, a distinct advantage for treating highly mutable RNA viruses. Coronavirus, influenza virus, and RSV are also global pathogens of animals (including cattle, pigs and poultry). Antiviral development for livestock lags behind its human counterpart, despite its potential benefits of safeguarding animal health and productivity. Given that future pandemics are likely to be of animal origin, where animal to human (zoonotic) and reverse zoonotic (human to animal) spread take place, antivirals, such as TG and its derivatives, could play a key role in the treatment and control of important viral infections in both humans and animals. Thus, our goal in this proposal is to enhance the impact and commercial significance of TG through the generation of novel secondary derivatives with greater antiviral potency for animal and human use. We have established that TG is orally active as an antiviral, and that it is converted into a limited number of ester hydrolysis and side chain oxidation metabolites. We hypothesise that one or more of such TG metabolites are novel structures with enhanced antiviral activity. To this end, we propose to carry out detailed in vivo pharmacokinetics (PK) analyses of TG to fully determine its metabolites post-absorption, synthesise the main metabolites identified, and characterise the synthesised metabolites for antiviral activities to generate comprehensive cellular PK and antiviral data of the most promising TG derivative(s) for clinical development and commercial exploitation. TG and its derivatives represent a whole new generation of powerful host-centred antivirals (as opposed to conventional antiviral drugs that directly target viruses) that could be adopted in a holistic "One Health" approach to control human and animal viruses. The outcomes of this project could have far-reaching impact on a global scale in the treatment and control of RNA viral infections of human and animal importance.

Publicationslinked via Europe PMC

Last Updated:38 minutes ago

View all publications at Europe PMC

Emergent SARS-CoV-2 variants: comparative replication dynamics and high sensitivity to thapsigargin.