Open Network for WAter-Related Diseases (ONWARD)

  • Funded by UK Research and Innovation (UKRI)
  • Total publications:1 publications

Grant number: EP/T003820/1

Grant search

Key facts

  • Disease

    Dengue, Cholera
  • Start & end year

    2020
    2023
  • Known Financial Commitments (USD)

    $195,561.72
  • Funder

    UK Research and Innovation (UKRI)
  • Principal Investigator

    Shubha Sathyendranath
  • Research Location

    United Kingdom
  • Lead Research Institution

    Plymouth Marine Laboratory
  • Research Priority Alignment

    N/A
  • Research Category

    Epidemiological studies

  • Research Subcategory

    Disease surveillance & mapping

  • Special Interest Tags

    Data Management and Data Sharing

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

The ONWARD Network (Open Network for Water-Related Diseases) is dedicated to forecasting, early warning and risk mapping for water-associated diseases through use of remote sensing, field observations and mathematical modelling. Our vision is to enable cost-effective, regularly updated, geo-referenced early warning for areas vulnerable to water-associated diseases, which in turn will enable preventive measures to be deployed in a timely manner to minimise the probability of epidemics. Our long-term vision is to establish a system that will be applicable broadly, in a variety of localities and for a variety of diseases. By "water-associated" disease, we mean a rather broad class, including diarrhoeal diseases such as cholera; skin diseases associated with water-borne bacteria or metazoan parasites; vector-borne diseases such as malaria and dengue fever; and others such as hepatitis. Any or all of them will be relevant to the activities of the network. The "water" involved may be fresh, or brackish or coastal seawater. The network will respond primarily the GCRF Challenge of Global Health (infectious diseases), and secondarily to that of Resilience to Environmental Shocks and Change (since outbreaks of water-associated diseases are affected by extreme weather events, expected to become more frequent as a result of climate change). The network will also address UN Sustainable Development Goal 3, Target 3d, to "Strengthen the capacity of all countries, in particular developing countries, for early warning, risk reduction and management of national and global health risks." According to the World Health Organisation, some two billion people use faecally-contaminated drinking water, putting them at risk of death or chronic poor health from water-borne infectious diseases such as cholera, dysentery, typhoid and polio. Provision of safe drinking water is hostage to the influence of extreme weather and flooding. Apart from the fatalities, the effect of a chronic burden of lower-level infection by water-associated diseases is antagonistic to the maintenance of a healthy work force and to the well-being of society in general, to the detriment of sustainable development. For example, cholera kills an estimated 95,000 people every year, but it also makes another 2.9 million seriously ill with a debilitating disease. Hence the need to address, in addition, the resilience of communities to perturbations of the safe drinking water supply under extreme weather events associated with a changing climate. Before now, our ability to develop early warning, risk reduction and management of national and global health risks due to water-associated diseases has been limited by mutual isolation of the scientific communities whose collective effort is required to make progress. Forecasting outbreaks of water-associated diseases and their geo-referenced risk mapping is a complex matter for which the collaboration of experts from several disciplines (ranging from environmental biochemistry, genetics, molecular biology, social sciences and epidemiology to remote sensing and modelling) is needed if we are to make real advances. Hitherto, the required experts have rarely encountered each other in a scientific setting. A multidisciplinary network is essential to foster exchange of ideas between them, and so build a collaborative approach to a difficult problem by uniting them behind a common target. We believe that progress in early warning, risk forecasting and risk management of water-associated diseases will be possible through the combined efforts of specialists in the stated disciplines. Establishment of a related network is the perfect way to bring this about. An international team of outstanding experts, as well as related stakeholders, has been assembled to undertake the work. The network will be an open one. As well as the research activity, there will be a component of capacity building delivered through two training courses.

Publicationslinked via Europe PMC

Mapping schistosomiasis risk landscapes and implications for disease control: A case study for low endemic areas in the Middle Paranapanema river basin, São Paulo, Brazil.