Pyroptotic Macrophages Traps Against Shigella Infection

  • Funded by National Institutes of Health (NIH)
  • Total publications:0 publications

Grant number: 5R21AI175731-02

Grant search

Key facts

  • Disease

    Salmonella infection
  • Start & end year

    2023
    2025
  • Known Financial Commitments (USD)

    $191,250
  • Funder

    National Institutes of Health (NIH)
  • Principal Investigator

    ASSISTANT PROFESSOR Youssef Aachoui
  • Research Location

    United States of America
  • Lead Research Institution

    UNIV OF ARKANSAS FOR MED SCIS
  • Research Priority Alignment

    N/A
  • Research Category

    Pathogen: natural history, transmission and diagnostics

  • Research Subcategory

    Immunity

  • Special Interest Tags

    N/A

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

Shigella spp. are major enteric pathogens, causing acute diarrhea and bacillary dysentery leading to severe mortality and morbidity worldwide. Yet, there is no licensed vaccine to prevent shigellosis. Shigella virulence requires a T3SS and at least 30 secreted effectors that are often functionally redundant, yet required to invade host cells, maintain a replicative niche, minimize alarm signals, and promote colonization. We previously showed that S. flexneri T3SS activity is detected in macrophages by Caspase-1 inflammasomes, resulting in pyroptosis. In the recent mouse shigellosis model, the role of the inflammasome is only focused on gut intestinal epithelial cells (IECs). However, it is generally believed that Shigella initially infect macrophages and takes advantage of pyroptotic cell death to exit the cells and subsequently infect IECs. On the other hand, macrophage pyroptosis is known to generate pore-induced traps (PITs), trapping, and neutralizing intracellular bacterial pathogens. Since macrophages pyroptosis is considered to play dichotomous roles during Shigella infection, we propose to investigate the interaction between macrophages' inflammasomes and S. flexneri. We propose two specific Aims: In Aim1, we will investigate how pyroptotic macrophages from PITs trap intracellular bacteria. In Aim 2. We will define the role of pyroptotic macrophages and PITs during S. flexneri infection in vitro and in vivo. We hope that examining the role of macrophages pyroptosis against S. flexneri infection, will be highly significant and relevant for better understanding immunity and disease pathologies during Shigella infection and thereby providing the basis for developing novel safer, and more effective vaccines.