Low Density Neutrophils Link Inflammation and Coagulopathy in COVID-19
- Funded by National Institutes of Health (NIH)
- Total publications:2 publications
Grant number: 1R01HL158779-01
Grant search
Key facts
Disease
COVID-19Start & end year
2022.02026.0Known Financial Commitments (USD)
$761,423Funder
National Institutes of Health (NIH)Principal Investigator
. Jiapeng HuangResearch Location
United States of AmericaLead Research Institution
UNIVERSITY OF LOUISVILLEResearch Priority Alignment
N/A
Research Category
Clinical characterisation and management
Research Subcategory
Disease pathogenesis
Special Interest Tags
N/A
Study Type
Clinical
Clinical Trial Details
Not applicable
Broad Policy Alignment
Pending
Age Group
Unspecified
Vulnerable Population
Unspecified
Occupations of Interest
Unspecified
Abstract
Project Summary Coronavirus disease 2019 (COVID-19) is a potentially life threatening disease caused by the novel viral pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Approximately 20% of COVID-19 patients experience severe disease, typically presenting with bilateral pneumonia, and about 5% progress to acute respiratory distress syndrome (ARDS). ARDS results from a combination of virally induced lung injury and the rapid influx of immune cells that release inflammatory mediators leading to a hyper-activated state known as cytokine storm. COVID-19 ARDS is further exacerbated by a unique diffuse coagulopathy leading to thrombus formation in the venous and arterial circulations and microthrombi in capillaries of the lungs. Predisposing factors for this coagulopathy include increased fibrinogen, activated coagulation cascade, platelet activation, hyper- inflammation, neutrophil extracellular trap (NET) formation, and endothelial cell damage. Understanding the pathophysiology of COVID-19 coagulopathy and ARDS is critical to finding effective therapeutic interventions. Accumulating evidence indicates critical roles of neutrophils in both ARDS and immunothrombosis in COVID-19. Our preliminary studies identified a novel population of low-density neutrophils (LDN) which expresses intermediate levels of CD16 (CD16Int LDN) in COVID-19 patients. The number of CD16Int LDN correlated with disease severity, levels of inflammatory cytokines IL-6/TNF-a, D-dimer levels, and clinical outcomes. In addition, CD16Int LDN showed spontaneous NET formation and evidence of in vivo platelet activation and granule exocytosis. Based on these findings, we postulate that CD16Int LDN play a critical role in the induction of coagulopathy and pulmonary inflammation in severe and critical COVID-19 patients. Three specific Aims are proposed to further dissect the underlying mechanisms. Aim 1 will comprehensively characterize LDN subsets using proteomics and transcriptomics approaches. The information gained from those studies will be used to refine our CyTOF antibody panel. We will use this panel to track differential neutrophil clusters in longitudinal patient samples. Aim 2 will determine LDN subsets functional changes during disease progression and their contributions to dysregulated inflammatory response and coagulopathy in severe and critical COVID- 19 patients. Neutrophil degranulation, NET formation, phagocytosis, chemotaxis, apoptosis, and cytokine release will be examined. We will also determine if LDN promote coagulopathy in COVID-19 patients. Aim 3 will determine whether inhibition of neutrophil granule exocytosis using our novel TAT-fusion protein inhibitors prevents activated neutrophil-mediated functional changes and hypercoagulation. We will also use a hACE2 Tg mouse model to determine the in vivo efficacy of TAT-fusion proteins on lung inflammation and impaired function. Successful completion of this proposal will provide novel insights into COVID-19 pathophysiology by defining the role of a unique subset of neutrophils and by establishing neutrophil degranulation as a therapeutic target for inhibiting inflammatory lung injury and immunothrombosis in COVID-19.
Publicationslinked via Europe PMC
Last Updated:15 hours ago
View all publications at Europe PMC