Decentralized microfluidic in vitro diagnostic patch for pandemic control

Grant number: 101137242

Grant search

Key facts

  • Disease

    N/A

  • Start & end year

    2024
    2027
  • Known Financial Commitments (USD)

    $7,595,656.11
  • Funder

    European Commission
  • Principal Investigator

    LAMMERTYN Jeroen
  • Research Location

    Belgium
  • Lead Research Institution

    KATHOLIEKE UNIVERSITEIT LEUVEN
  • Research Priority Alignment

    N/A
  • Research Category

    Pathogen: natural history, transmission and diagnostics

  • Research Subcategory

    Diagnostics

  • Special Interest Tags

    Innovation

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

In vitro diagnostic (IVD) technologies have revolutionized healthcare, yet remain confined to the laboratories. This traditional approach massively failed to manage viral outbreak during the COVID-19 pandemic because it lacked quick and cost-effective diagnosis. Moreover, an urgent need was evident for bringing quantitative lab-quality diagnosis to the hands of end users (i.e., point-of-care, POC). Despite high expectations from Lab-on-Chip technologies, they failed so far to disrupt the IVD market due to their complexity, high cost, off-chip sample preparation, poor scalability, to mention a few. The DECIPHER consortium aims to revolutionize the POC IVD field by developing innovative microfluidic-based DECIPHER patch capable of both biofluids (self-)sampling via hollow microneedles (HMNs) and immediate analysis of this sample on the very same patch in a completely self-powered manner, producing quantitative result to be read out with a re-purposed glucose meter. Ebola and Lassa viruses are selected as relevant model systems because they are highly contagious with human-to-human transmission, high mortality rate and no vaccine/treatment available, thus having meaningful potential for new pandemic threats. To offer such a genuine sample-to-result quantitative POC solution, the DECIPHER value chain, from lab to market, will cover: (1) investigation of high-throughput manufacturing processes with (2) novel polymers, innovations in the fields of (3) microfluidics, (4) HMNs and (5) quantitative molecular bioassays, (6) DECIPHER patch analytical and clinical validation (both retrospective and prospective), as well as (7) AI-based models, (8) socio-economic/systems analysis and (9) life cycle assessment of DECIPHER patch. This true interdisciplinarity will be represented by highly experienced DECIPHER consortium with partners from 3 universities, 5 research institutes, 1 SME, 1 large company and 1 non-governmental organization from 6 countries.

Publicationslinked via Europe PMC

Last Updated:34 minutes ago

View all publications at Europe PMC

Fully automated sample-to-result SIMPLE-RPA microfluidic chip: towards in ovo sexing application