An innovative toolbox based on Pd-catalysis for protease inhibitor synthesis, applied to the discovery of pan-anti-flaviviral compounds
- Funded by European Commission
- Total publications:0 publications
Grant number: 101069018
Grant search
Key facts
Disease
Zika virus disease, Congenital infection caused by Zika virus…Start & end year
20232024Known Financial Commitments (USD)
$186,897.41Funder
European CommissionPrincipal Investigator
VAN DER VEKEN PieterResearch Location
BelgiumLead Research Institution
UNIVERSITEIT ANTWERPENResearch Priority Alignment
N/A
Research Category
Therapeutics research, development and implementation
Research Subcategory
Pre-clinical studies
Special Interest Tags
N/A
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
Protease inhibitors can potently block the viral replication cycle. In the context of flaviviruses, NS2B-NS3 protease is a promising viral drug target because of its well conserved backbone among flaviviral species, opening the perspective of developing pan-anti-flaviviral NS2B-NS3 inhibitors. All reported NS2B-NS3 inhibitors, however, suffer from low potency and/or poor biopharmaceutical properties. Structural optimization has proven to be slow and challenging, in part because synthetic methodology for fast, chemically versatile and diversity-oriented modification is lacking. To address these challenges, we propose a methodology to assemble protease inhibitors with varying warheads and side chains in just 2 steps from common starting materials, and apply it to the discovery of pan-anti-flaviviral compounds. First, selected amide/carbamate and aldehyde building blocks will be condensed in a reported three-component reaction with phenylsulfinic acid and benzotriazole, delivering individual 'masked' N-acylimines. These will be further submitted to innovative cross-coupling steps, in which warheads will be introduced. Once the methodology is optimized and the scope is determined, at least 10 additional analogues of a known NS2B-NS3 inhibitor will be prepared with variations in the warhead, P1 side chain and P2-P3 moieties will be synthesized. They will be subjected to enzymatic affinity determination, binding kinetics analysis and cellular assays. Experimental data will be used to validate a Molecular Dynamics study of NS2B-NS3 inhibitors. The project is envisaged to deliver significant societal, scientific R&I, and economic impacts by managing flavivirus infections and creating business cases for industrial R&I in Europe.