SBIR Phase II: COVID-19 Rapid Sensing Using Structural DNA Biosensors

  • Funded by National Science Foundation (NSF)
  • Total publications:1 publications

Grant number: 2127436

Grant search

Key facts

  • Disease

    COVID-19
  • Start & end year

    2022
    2026
  • Known Financial Commitments (USD)

    $998,507
  • Funder

    National Science Foundation (NSF)
  • Principal Investigator

    Xiaohu Yao
  • Research Location

    United States of America
  • Lead Research Institution

    ATOM BIOWORKS INC
  • Research Priority Alignment

    N/A
  • Research Category

    Pathogen: natural history, transmission and diagnostics

  • Research Subcategory

    Pathogen morphology, shedding & natural history

  • Special Interest Tags

    N/A

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

The broader impact of this Small Business Innovation Research (SBIR) Phase I project will be the development of a platform technology for creating rapid virus diagnostics that directly recognizes the virus surface protein pattern from a patient sample and generates accurate results within minutes. Current standards for high-fidelity viral pathogen diagnostics require complex instruments, technical expertise to run the instruments, and hours to produce and interpret results. The proposed platform creates a virus-specific biosensor that selectively binds to the target virus and produces visible results without time-consuming pre-processing or expensive instruments. Lower cost tests and faster sample-to-result turnovers could result in more effective control of disease spread. This project seeks to develop a highly functional, sensitive, and specific diagnostic for the detection of coronavirus. This technology is based on the company's Pattern-Recognition Enhanced Sensing and Therapeutics (PEST) concept. The solution is a first-in-class diagnostics that uses algorithmically-designed structural DNA to form a trap that may detect and selectively bind a signature pattern of the pathogen. This recognition and binding may generate visual signals without the need of DNA/RNA preprocessing or amplification associated with the current generation of molecular tests (polymerase chain reactions, PCRs). This project will involve building a preclinical prototype of PEST-enabled lateral flow based COVID-19 rapid diagnostics with a goal of providing results for each sample within 5 minutes. This fast test result will be followed by preclinical validation to determine the test's specificity, limits of detection, and implement mechanism to improve the assay specificity and to avoid cross-reaction to other virus types. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Publicationslinked via Europe PMC

Last Updated:32 minutes ago

View all publications at Europe PMC

Engineering Novel DNA Nanoarchitectures for Targeted Drug Delivery and Aptamer mediated Apoptosis in Cancer Therapeutics.