SBIR Phase II: Rapid disinfection using compact plasma reactors

  • Funded by National Science Foundation (NSF)
  • Total publications:0 publications

Grant number: 2151628

Grant search

Key facts

  • Disease

    COVID-19
  • Start & end year

    2023
    2025
  • Known Financial Commitments (USD)

    $878,296
  • Funder

    National Science Foundation (NSF)
  • Principal Investigator

    Justin Kosky
  • Research Location

    United States of America
  • Lead Research Institution

    SurfPlasma, Inc.
  • Research Priority Alignment

    N/A
  • Research Category

    Infection prevention and control

  • Research Subcategory

    Barriers, PPE, environmental, animal and vector control measures

  • Special Interest Tags

    N/A

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project addresses the societal need for a non-thermal, economical, and efficient solution for sterilizing deadly pathogens that are common in medical facilities and everyday living spaces. The commercial opportunity lies in developing a non-thermal, portable, safe, and economical sterilization device for materials contaminated with virus, bacteria, and fungi. The proposed technology will be used in areas that are lacking in current state-of-the-art sterilization technologies. It operates at low temperature, necessary for temperature-sensitive equipment, is ecofriendly, has high throughput, requires little maintenance, and includes an inbuilt mixing system for the sterilization of complex surface geometries. Applications include sterilizing personal protective equipment (PPE), surgical tools, medical devices, food, beverages, etc. from harmful pathogens. The addressable market consists of healthcare facilities, medical device companies, and food and beverage companies. The major impact will be in crowded facilities and community settings where rapid disinfection of objects is required. Additionally, the technology can be integrated with existing systems like refrigeration units. The technology is expected to save lives by preventing hospital-acquired infections, the further spread of COVID-19, and possible future outbreaks. This SBIR Phase II project proposes a sterilization device that operate at low temperatures, works with complex geometries, and is low energy and low cost. These areas are not currently addressed by one single, state-of-the-art sterilization technology. The solution is based on an active plasma module (APM). Previously, research established APM efficacy against SARS CoV-2 and its surrogate on metal, plastic, and fabric, and the required operating conditions (exposure times, ozone requirements, and power) to achieve sterilization. The objectives in this project include prototype development with (i) efficacy tests against BioSafety Level (BSL)-2 and -3 pathogens, (ii) cycle times, ozone requirements, and power demands, (iii) a practical ozone removal system to meet safety limits, (iv) material compatibility data, and (v) a user-friendly control interface. The team will also examine APM quality control, the ability to meet required product specifications, and management of the reverse-engineering threat. Successful Phase II completion will result in a market-ready prototype with sterilization data against various pathogens and product specifications required for customer adoption. The project will advance research on power efficient ozone sterilization. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.