CDS&E: Simulation- and Data-driven Peptide Antibody Design Targeting RBD and non-RBD Epitopes of SARS-CoV-2 Spike Protein
- Funded by National Science Foundation (NSF)
- Total publications:2 publications
Grant number: 2328095
Grant search
Key facts
Disease
COVID-19Start & end year
20222026Known Financial Commitments (USD)
$549,351Funder
National Science Foundation (NSF)Principal Investigator
Baofu QiaoResearch Location
United States of AmericaLead Research Institution
CUNY Baruch CollegeResearch Priority Alignment
N/A
Research Category
Therapeutics research, development and implementation
Research Subcategory
Pre-clinical studies
Special Interest Tags
N/A
Study Type
Non-Clinical
Clinical Trial Details
N/A
Broad Policy Alignment
Pending
Age Group
Not Applicable
Vulnerable Population
Not applicable
Occupations of Interest
Not applicable
Abstract
Drugs interact with proteins to disrupt bacterial and viral infections. Effective drugs are usually discovered rather than designed. Antibodies are protein complexes generated by the immune system to bind to and inactivate viruses. Peptides are short strings of amino acids that are being designed to mimic the protein binding activity of antibodies. Many aspects of protein-protein and protein-peptide interactions are not clearly understood. This project will apply an artificial intelligence approach to understand those interactions. The SARS-CoV-2 spike protein will be the model system for study. The resulting model for therapeutic peptide design will be provided to the research community on a variety of software platforms. The project will also support outreach to K-12 students regarding the SARS-CoV-2 virus and viral infections. The overall objective is to develop a hybrid machine learning-simulation (MLSim) platform that allows us to better understand the molecular interaction between peptide drugs and viral proteins. The model viral protein system will be the SARS-CoV-2 spike proteins at both the receptor-binding domain (RBD) and the non-RBD. Transfer learning techniques for existing data models for protein-peptide interactions will be implemented. Online learning techniques will allow for the timely update of the predictive models with newly available data. The multiscale simulation component aids the machine learning part by supplying high-fidelity input data and cross-validating the predictions These efforts should result in molecular-level insight into viral protein-antibody interactions. There are two key outcomes anticipated from this project. First, a simulation- and data-enabled platform that integrates a high-throughput, customizable machine learning pipeline for fast screening and filtering peptide candidates, with high-fidelity all-atom explicit-solvent molecular dynamics simulation and free energy calculations. The second is fundamental insight into viral protein-peptide interactions and how those influence the design of neutralizing peptides. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Publicationslinked via Europe PMC
Last Updated:31 minutes ago
View all publications at Europe PMC