SBIR Phase II: Development of an End-to-End Solution for High-Volume Water Microbiological Testing

  • Funded by National Science Foundation (NSF)
  • Total publications:0 publications

Grant number: 2423051

Grant search

Key facts

  • Disease

    N/A

  • Start & end year

    2024
    2026
  • Known Financial Commitments (USD)

    $995,600
  • Funder

    National Science Foundation (NSF)
  • Principal Investigator

    Abdennour Abbas
  • Research Location

    United States of America
  • Lead Research Institution

    FRONTLINE BIOTECHNOLOGIES INC.
  • Research Priority Alignment

    N/A
  • Research Category

    Epidemiological studies

  • Research Subcategory

    Disease transmission dynamics

  • Special Interest Tags

    N/A

  • Study Type

    Non-Clinical

  • Clinical Trial Details

    N/A

  • Broad Policy Alignment

    Pending

  • Age Group

    Not Applicable

  • Vulnerable Population

    Not applicable

  • Occupations of Interest

    Not applicable

Abstract

The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project is to enhance public health and safety through advanced water microbiological testing technologies. This project's innovation enables the early detection of pandemics by identifying waterborne viruses such as SARS-CoV-2 which causes COVID-19, and norovirus, which is notorious for causing gastroenteritis, potentially weeks before outbreaks manifest. Such early detection is vital for policymakers, allowing more effective intervention strategies and reducing both human casualties and healthcare costs. Moreover, the technology promises to improve the safety of drinking water, particularly important as many states increasingly turn to recycling wastewater due to drought. This could decrease the incidence of waterborne illnesses, which currently affect millions and cost the U.S. healthcare system billions annually. Additionally, the innovation facilitates more accessible and efficient water testing in remote and underserved communities by reducing costs and processing times, supporting healthcare equity. Finally, this new approach not only promises to transform drinking water safety monitoring practices and wastewater-based pandemic surveillance but also drives the implementation of new water quality standards and regulatory frameworks, aligning with the Best Available Technology practices. This Small Business Innovation Research (SBIR) Phase II project addresses significant gaps in water microbiological testing. Monitoring the presence of viruses such coronavirus and norovirus in water is crucial for pandemic surveillance and drinking water safety. Waterborne viruses are present in low concentrations and their detection requires the analysis of large sample volumes. However, current tools are designed for small volumes, resulting in low sensitivity and high variability in testing results. The goal of this project is to develop a comprehensive technological solution to enhance the reliability and standardization of wastewater epidemiology and drinking water testing, a pressing need identified by health agencies to improve data quality and comparability. The current effort focuses on developing a scalable platform that integrates a novel filtration cartridge and reagent kit, capable of processing up to two liters of water in less than five minutes. This capability enhances the yield and purity of viral nucleic acids and improves the detection limit by two orders of magnitude, enhancing accuracy and reducing false positives. By improving our ability to monitor pathogen spread through community water systems, this project is expected to enhance pandemic preparedness and drinking water safety and facilitate more effective public health interventions. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.